设函数f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.(1)证明:-3<c≤-1,且b≥0;(2)若m是方程f(x)+1=0

设函数f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.(1)证明:-3<c≤-1,且b≥0;(2)若m是方程f(x)+1=0

题型:解答题难度:一般来源:不详
设函数f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.
(1)证明:-3<c≤-1,且b≥0;
(2)若m是方程f(x)+1=0的一个实数根,判断f(m-4)的符号,并证明你的结论.
答案
(1)∵f(1)=0,∴1+2b+c=0;
∴b=-
c+1
2

又c<b<1,
故c<-
c+1
2
<1.即-3<c<-
1
3

又f(x)+1=0有实数根.
即x2+2bx+c+1=0有实数根.
∴△=4b2-4(c+1)≥0;
即(c+1)2-4(c+1)≥0;
∴c≥3或c≤-1;
又-3<c<-
1
3
,取交集得-3<c≤-1,
由b=-
c+1
2
知b≥0.
(2)f(x)=x2+2bx+c
=x2-(c+1)x+c
=(x-c)(x-1).
∴函数f(x)=x2+2bx+c的图象与x轴交于A(c,0)、B(1,0)两点;
∵f(m)=-1<0,∴c<m<1;
∴c-4<m-4<1-4<c;
∴m-4<c.
∵f(x)=x2+2bx+c在(-∞,c)上递减,
∴f(m-4)>f(c)=0.
∴f(m-4)的符号为正.
举一反三
已知关于x的方程9x+m•3x+6=0(其中m∈R).
(1)若m=-5,求方程的解;
(2)若方程没有实数根,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
已知0<x<1,则函数y=


x(1-x)
的最大值等于______.
题型:填空题难度:简单| 查看答案
设函数f(x)=x2-2tx+2,其中t∈R.
(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;
(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.
(3)若对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8,求t的取值范围.
题型:解答题难度:一般| 查看答案
二次函数f(x)=ax2+bx+c恒满足f(x)≤f(2)且在(m,m+1)上是单调增函数,则m的取值范围是______.
题型:填空题难度:一般| 查看答案
如果函数y=x2+ax+2在区间(-∞,4]上是减函数,那么实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.