(1)当m=0时,函数f(x)=-2x+3+lnx 由题意知x>0,f′(x)=-2+=,令f′(x)>0,得0<x<时, 所以f(x)的增区间为(0,). (2)由f′(x)=mx-m-2+,得f′(1)=-1, 知曲线y=f(x)在点P(1,1)处的切线l的方程为y=-x+2, 于是方程:-x+2=f(x)即方程 m(x-1)2-x+1+lnx=0有且只有一个实数根; 设g(x)=m(x-1)2-x+1+lnx,(x>0). 则g′(x)==, ①当m=1时,g′(x)=≥0,g(x)在(0,+∞)上为增函数,且g(1)=0,故m=1符合题设; ②当m>1时,由g′(x)>0得0<x<或x>1, 由g′(x)=<0得<x<1, 故g(x)在区间(0,),(1,+∞)上单调递增,在( 1,)区间单调递减, 又g(1)=0,且当x→0时,g(x)→-∞,此时曲线y=g(x)与x轴有两个交点,故m>1不合题意; ③当0<m<1时,由g′(x)=>0得0<x<1或x>, 由g′(x)=<0得1<x<, 故g(x)在区间(0,1),(1,)上单调递增,在(,+∞)区间单调递减, 又g(1)=0,且当x→0时,g(x)→+∞,此时曲线y=g(x)与x轴有两个交点,故0<m<1不合题意; ∴由上述知:m=1. |