已知函数f(x)=|x+1|,g(x)=2|x|+a.(1)当a=0时,解不等式f(x)≥g(x);(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范

已知函数f(x)=|x+1|,g(x)=2|x|+a.(1)当a=0时,解不等式f(x)≥g(x);(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范

题型:解答题难度:简单来源:不详
已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.
答案
(1)         (2) [1,+∞)
解析

试题分析:(1)∵|x+1|≥2|x|⇒x2+2x+1≥4x2⇒-≤x≤1,
∴不等式f(x)≥g(x)的解集为.
(2)若任意x∈R, |x+1|2|x|+a恒成立,即任意x∈R, |x+1|-2|x|a恒成立,
令φ(x)=|x+1|-2|x|,则a φ(x)max
又φ(x)=
当x≥0时,φ(x)≤1;当-1≤x<0时,-2 ≤φ(x)<1;当x<-1时,φ(x)<-2.
综上可得:φ(x)≤1,
∴a1,即实数a的取值范围为[1,+∞).
点评:本题主要考查绝对值不等式的解法,求函数的最小值,函数的恒成立问题,属于中档题.
举一反三
已知函数),
(Ⅰ)若曲线在它们的交点处具有公共切线,求的值;
(Ⅱ)当时,求函数在区间上的最大值.
题型:解答题难度:简单| 查看答案
已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)< .
题型:解答题难度:简单| 查看答案
已知函数,g(x)=,a,b∈R.
(1)求函数f(x)的单调区间;
(2)记函数h(x)=f(x)+g(x),当a=0时,h(x)在(0,1)上有且只有一个极值点,求实数b的取值范围;
(3)记函数F(x)=|f(x)|,证明:存在一条过原点的直线l与y=F(x)的图象有两个切点.
题型:解答题难度:简单| 查看答案
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙,地面利用原地面均不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,屋顶每平方米造价20元.
(1)仓库面积的最大允许值是多少?
(2)为使面积达到最大而实际投入又不超过预算,正面铁栅应设计为多长?
题型:解答题难度:简单| 查看答案
定义在上的偶函数,对任意实数都有,当时,,若在区间内,函数与函数的图象恰有4个交点,则实数的取值范围是__________.
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.