已知A,B是△ABC的两个内角,a=2cosA+B2i+sinA-B2j,(其中i,j是互相垂直的单位向量),若|a|=62.(1)试问tanA•tanB是否为

已知A,B是△ABC的两个内角,a=2cosA+B2i+sinA-B2j,(其中i,j是互相垂直的单位向量),若|a|=62.(1)试问tanA•tanB是否为

题型:不详难度:来源:
已知A,B是△ABC的两个内角,


a
=


2
cos
A+B
2


i
+sin
A-B
2


j
,(其中


i


j
是互相垂直的单位向量),若|


a
|=


6
2

(1)试问tanA•tanB是否为定值,若是定值,请求出,否则请说明理由;
(2)求tanC的最大值,并判断此时三角形的形状.
答案
(1)tanA•tanB为定值
1
3
,证明如下:
|


a
|
2
=
3
2
,得2cos2
A+B
2
+sin2
A-B
2
=
3
2

∴1+cos(A+B)+
1-cos(A-B)
2
=
3
2

即2cos(A+B)=cos(A-B),即cosAcosB=3sinAsinB
∴tanAtanB=
1
3

(2)∵tanAtanB=
1
3
>0,∴tanA>0,tanB>0
∴tan(A+B)=
tanA+tanB
1-tanAtanB
=
3
2
(tanA+tanB)≥
3
2
×2


tanA•tanB
=


3

∴tan(A+B)≥


3
,即-tanC≥


3

∴tanC≤-


3

当tanC=-


3
时,





tanA+tanB=
2


3
3
tanA•tanB=
1
3
,即tanA=tanB=


3
3

∴A=B=30°
∴tanC的最大值为-


3
,此时△ABC为等腰三角形
举一反三
已知函数f(x)=


3
2
sin2x-cos2x-
1
2
,x∈R,
(1)求函数f(x)的最小值和最小正周期;
(2)求函数在[-
π
4
π
4
]上的最大值和最小值.
题型:不详难度:| 查看答案
设函数f(x)=sin2(x+
π
4
)-cos2(x+
π
4
)(x∈R),则函数f(x)是(  )
A.最小正周期为π的奇函数
B.最小正周期为π的偶函数
C.最小正周期为
π
2
的奇函数
D.最小正周期为
π
2
的偶函数
题型:许昌模拟难度:| 查看答案
在△ABC中,已知cosA=
3
5

(Ⅰ)求sin2
A
2
-cos(B+C)
的值;
(Ⅱ)若△ABC的面积为4,AB=2,求BC的长.
题型:不详难度:| 查看答案
已知sinx+cosx=-1,则sin2005x+cos2005x的值为(  )
A.0B.1C.-1D.±1
题型:不详难度:| 查看答案
函数y=sin(x+10°)+cos(x+40°),(x∈R)的最大值是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.