本题主要考查了利用基本量表示的等差数列、等比数列的通项,求和公式的应用,错位相减求解数列的和,属于数列的知识的综合应用. (1)根据已知条件可知三项的关系式,利用通项公式得到结论。 (2)根据第一问的结论得到通项公式,然后运用分组求和得到结论 (1)因为成等比数列, 所以.设等差数列的公差为,则.,得到d=1,然后求解得到结论。同时, ,得到其通项公式。 (2)因为,然后运用分组求和法得到结论。 解:(1)因为成等比数列, 所以. ……………………1分 设等差数列的公差为,则. ………2分 所以d=1 ………3分 . ………4分 ,………5分 ,………6分 ……7分 ………8分 (2)………9分 ………11分 ………14分 |