已知函数,数列满足:.(Ⅰ)求证:;(Ⅱ)求数列的通项公式;(Ⅲ)求证不等式:

已知函数,数列满足:.(Ⅰ)求证:;(Ⅱ)求数列的通项公式;(Ⅲ)求证不等式:

题型:不详难度:来源:

已知函数,数列满足:

(Ⅰ)求证:
(Ⅱ)求数列的通项公式;
(Ⅲ)求证不等式:
答案
如下
解析
(Ⅰ)

时,,即是单调递增函数;
时,,即是单调递减函数;
所以,即是极大值点,也是最大值点
,当时取到等号.          5分
(Ⅱ)由

方法1 


即数列是等差数列,首项为,公差为
                                              
方法2利用函数不动点
方法3利用观察、归纳、猜想、数学归纳法证明
(Ⅲ)

又∵时,有
,则


                                     
举一反三
已知Sn=1++…+,(n∈N*),设f(n)=S2n+1Sn+1,试确定实数m的取值范围,使得对于一切大于1的自然数n,不等式: 
f(n)>[logm(m-1)]2[log(m1)m2恒成立.
题型:不详难度:| 查看答案
已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.
(1)求y=f(x)的表达式;
(2)若任意实数x都满足等式f(xg(x)+anx+bn=xn+1g(x)]为多项式,n∈N*),试用t表示anbn
(3)设圆Cn的方程为(xan)2+(ybn)2=rn2,圆CnCn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rnSn.
题型:不详难度:| 查看答案
设数列的前项和为,已知,且

其中为常数.
(Ⅰ)求的值;
(Ⅱ)证明:数列为等差数列;
(Ⅲ)证明:不等式对任何正整数都成立.
题型:不详难度:| 查看答案
已知等差数列的首项为a,公差为b;等比数列的首项为b,公比为a,其中a,且
  (1)求a的值;
  (2)若对于任意,总存在,使,求b的值;
  (3)在(2)中,记是所有中满足的项从小到大依次组成的数列,又记的前n项和,的前n项和,求证:
题型:不详难度:| 查看答案
设数列{an}的前n项和Sn=na+n(n-1)b,(n=1,2,…),ab是常数且b≠0.
(1)证明:{an}是等差数列.
(2)证明:以(an,-1)为坐标的点Pn(n=1,2,…)都落在同一条直线上,并写出此直线的方程.
(3)设a=1,b=,C是以(r,r)为圆心,r为半径的圆(r>0),求使得点P1P2P3都落在圆C外时,r的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.