假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房。预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%。另外,每年新建住房

假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房。预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%。另外,每年新建住房

题型:上海高考真题难度:来源:
假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房。预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%。另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
答案
解:(1)设中低价房面积形成数列{an},
由题意可知{an}是等差数列,其中a1=250,d=50,

,即
而n是正整数,∴n≥10,
∴到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米;
(2)设新建住房面积形成数列{bn},
由题意可知{bn}是等比数列,其中b1=400,q=1.08,
则bn=400·(1.08)n-1
由题意可知
有250+(n-1)50>400·(1.08)n-1·0.85,
由计算器解得满足上述不等式的最小正整数n=6,
∴到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%。
举一反三
设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3,…,其中A,B为常数,
(Ⅰ)求A与B的值;
(Ⅱ)证明数列{an}为等差数列;
(Ⅲ)证明不等式对任何正整数m、n都成立。
题型:0110 高考真题难度:| 查看答案
已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列,
(1)若an=3n+1,是否存在m、k∈N*,有am+am+1=ak?说明理由;
(2)找出所有数列{an}和{bn},使对一切n∈N*,,并说明理由;
(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{an}中存在某个连续p项的和是数列{bn}中的一项,请证明。
题型:上海高考真题难度:| 查看答案
公差不为零的等差数列{an}中,a1+a2+a5=13,且a1,a2,a5成等比数列,则数列{an}的公差等于

[     ]

A.1
B.2
C.3
D.4
题型:0115 期中题难度:| 查看答案
已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是

[     ]

A.6
B.5
C.4
D.3
题型:0113 期中题难度:| 查看答案
数列{an}的首项为a1,通项为an,前n项和为Sn,则下列说法中:
①若Sn=n2+n,则{an}为等差数列;②若Sn=2n-1,则{an}为等比数列;
③若2an=an+1+an-1(n≥2),则{an}为等差数列;
④若an2=an+1·an-1(n≥2),则{an}为等比数列;
正确的序号是(    )。
题型:0108 期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.