定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,

定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,

题型:不详难度:来源:
定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是 “平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.
答案
(1)见解析  (2) an=(-1).   Tn=
解析
(1)由条件得:an+1=2+2an,
∴2an+1+1=4+4an+1=(2an+1)2,
∴{2an+1}是“平方递推数列”.
∵lg(2an+1+1)=2lg(2an+1),
=2,∴{lg(2an+1)}为等比数列.
(2)∵lg(2a1+1)=lg5,
∴lg(2an+1)=lg5·2n-1,
∴2an+1=,∴an=(-1).
∵lgTn=lg(2a1+1)+lg(2a2+1)+…+lg(2an+1)
==(2n-1)lg5,
∴Tn=.
举一反三
设等比数列{an}的各项均为正数,公比为q,前n项和为Sn.若对∀n∈N*,有S2n<3Sn,则q的取值范围是(  )
A.(0,1]B.(0,2)C.[1,2)D.(0,)

题型:不详难度:| 查看答案
已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=(  )
A.5B.7C.6D.4

题型:不详难度:| 查看答案
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*,若数列{an}是等比数列,则实数t=   .
题型:不详难度:| 查看答案
已知数列{an}的前n项和Snn2(n∈N*),等比数列{bn}满足b1a1,2b3b4.
(1)求数列{an}和{bn}的通项公式;
(2)若cnan·bn(n∈N*),求数列{cn}的前n项和Tn.
题型:不详难度:| 查看答案
一个由实数组成的等比数列,它的前6项和是前3项和的9倍,则此数列的公比为(  )
A.2 B.3 C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.