(Ⅰ)Sn=⇒(1-q)Sn=2-qan且q≠1 当n=1时,(1-q)S1=2-qa1⇒a1=2 当n≥2时,(1-q)Sn-(1-q)Sn-1=qan-1-qan⇒an=qan-1 ∴{an}是以2为首项,公比为q的等比数列. (Ⅱ) 当q=时,由(1)得 an=2()n-1 又 f(x)=x2+2x-,∴f′(x)=x+2 由bn+1=f′(bn)得bn+1=f′(bn)=bn+2 ∴{bn}是以2为首项,公差为2的等差数列, 故bn=2n ∴cn=anbn=n()n Tn==n(n+1), Bn=++…+=++…+=1- An=c1+c2+…+cn=1•+2()2+…+n()n…① ∴An=1•()2+2()3+3()4+…+(n-1)()n+n()n+1…② ①-②得∴An=1•()1+()2+()3+…+()n-n()n+1 =-n()n+1=-n()n+1 ∴An=1--• ∴An-Bn=1--•-1+=-=3n+1-(2n2+5n+3) | (n+1)•3n+1 |
当n=1时,An-Bn=3n+1-(2n2+5n+3) | (n+1)•3n+1 | =<0 ∴An<Bn 当n≥2时, 令g(x)=3x+1-(2x2+5x+3) 则g′(x)=3x+1ln3-(4x+5),g∥(x)=3x+1(ln3)2-4在[2,+∞)上为单调增函数, ∴g∥(x)=3x+1(ln3)2-4≥33(ln3)2-4>0 ∴g′(x)=3x+1ln3-(4x+5)在[2,+∞)上为单调增函数, g′(x)=3x+1ln3-(4x+5)≥33ln3-9>27-9>0 g(x)=3x+1-(2x2+5x+3)在[2,+∞)上为单调增函数, ∴当n≥2时,g(n)=3n+1-(2n2+5n+3)≥33-(2×4+10+3)>0 即当n≥2时,An-Bn=3n+1-(2n2+5n+3) | (n+1)•3n+1 | >0 ∴当n≥2时,An>Bn 又f′(x)=x+2>0对x≥0恒成立, ∴f(x)在[0,+∞)上单调递增, ∴当n=1时f(An)<f(Bn) 当n≥2时f(An)>f(Bn). |