设同时满足条件:①bn+bn+22≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn} 叫“特界”数列.(Ⅰ)若数列{an} 为

设同时满足条件:①bn+bn+22≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn} 叫“特界”数列.(Ⅰ)若数列{an} 为

题型:不详难度:来源:
设同时满足条件:①
bn+bn+2
2
bn+1
(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn} 叫“特界”数列.
(Ⅰ)若数列{an} 为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn
(Ⅱ)判断(Ⅰ)中的数列{Sn}是否为“特界”数列,并说明理由.
答案
(Ⅰ)设等差数列{an}的公差为,
a1+2d=4,3a1+3d=18,…(2分)
解得a1=8,d=-2…(4分)
Sn=na1+
n(n-1)
2
d=-n2+9n
…(6分)
(Ⅱ)由
SnSN+2 
2
-Sn+1
=
(Sn+2-Sn+1)-(Sn+1Sn)
2
=
an+1an+1
2
=
d
2
=-1<0

Sn+Sn+2
2
<Sn+1

故数列数列{Sn}适合条件①…(9分)
Sn=-n2+9n=-(n-
9
2
)
2
+
81
4

则当n=4或n=5时,Sn有最大值20
即Sn≤20,故数列{Sn}适合条件②.
综上,故数列{Sn}是“特界”数列.…(12分)
举一反三
设数列{an}满足a1=1,a2=2,an=
1
3
(an-1+2an-2)(n=3,4,…).数列{bn}满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤bm+bm+1+…+bm+k≤1.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=nanbn(n=1,2,…),求数列{cn}的前n项和Sn
题型:广东难度:| 查看答案
已知数列{an},其前n项和Sn满足Sn+1=2Sn+1,且a1=1.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{nan}的前n项和Tn
题型:开封一模难度:| 查看答案
已知数列{an}的首项a1=1,an+1=3Sn(n≥1),则数列{an}的通项公式为 ______.
题型:不详难度:| 查看答案
数列{an}中,a3=1,a1+a2+…+an=an+1(n∈N*).
(Ⅰ)求a1,a2,a4,a5
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=n(n+1)(n+2)Sn,试求数列{cn}的前n项和Tn
题型:不详难度:| 查看答案
f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N*)
,是否存在g(n),使得等式f(1)+f(2)+f(3)+…+f(n)+n=ng(n)f(n)总成立?若存在,请写出g(n)通项公式(不必说明理由);若不存在,说明理由.______.
题型:奉贤区二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.