已知不等式ax2+bx+c<0(a≠0)的解集是∅,则( )A.a<0,△>0B.a<0,△≤0C.a>0,△≤0D.a>0,△>0
题型:不详难度:来源:
已知不等式ax2+bx+c<0(a≠0)的解集是∅,则( )A.a<0,△>0 | B.a<0,△≤0 | C.a>0,△≤0 | D.a>0,△>0 |
|
答案
∵不等式ax2+bx+c<0(a≠0)的解集是∅, ∴对应的二次函数y=ax2+bx+c(a≠0)的图象开口向上且与x轴至多一个交点, ∴a>0,△≤0 故选C. |
举一反三
关于x的一元二次不等式x2-k•x+1>0的解集为R,则实数k的取值范围是______. |
若∃x∈(1,5),使不等式x2-mx+4>0成立,则m的取值范围是______. |
关于x的不等式ax2+bx+2>0的解集{x|-<x<},则a、b的取值为( )A.a=-12,b=-2 | B.a=,b=- | C.a=12,b=2 | D.a=1,b= |
|
设函数f(x)=若f(x0)>1,则x0的取值范围是( )A.(0,2)∪(3,+∞) | B.(3,+∞) | C.(0,1)∪(2,+∞) | D.(0,2) |
|
最新试题
热门考点