设不等式|2x-1|<1的解集为M.(1)求集合M;(2)若a,b∈M,试比较ab+1与a+b的大小.
题型:不详难度:来源:
设不等式|2x-1|<1的解集为M. (1)求集合M; (2)若a,b∈M,试比较ab+1与a+b的大小. |
答案
(1)M={x|0<x<1}(2)ab+1>a+b |
解析
(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}. (2)由(1)和a,b∈M可知0<a<1,0<b<1, 所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b. |
举一反三
设函数f(x)=|2x+1|-|x-4|. (1)解不等式f(x)>2; (2)求函数y=f(x)的最小值. |
已知关于x的不等式|ax-2|+|ax-a|≥2(a>0). (1)当a=1时,求此不等式的解集; (2)若此不等式的解集为R,求实数a的取值范围. |
不等式的解集是 ( ) |
最新试题
热门考点