设函数.(1)求函数的单调区间和极值。(2)若关于的方程有三个不同实根,求实数的取值范围;(3)已知当(1,+∞)时,恒成立,求实数的取值范围.

设函数.(1)求函数的单调区间和极值。(2)若关于的方程有三个不同实根,求实数的取值范围;(3)已知当(1,+∞)时,恒成立,求实数的取值范围.

题型:不详难度:来源:
设函数.
(1)求函数的单调区间和极值。
(2)若关于的方程有三个不同实根,求实数的取值范围;
(3)已知当(1,+∞)时,恒成立,求实数的取值范围.
答案
(1)f(x)的单调递增区间为(-∞,-)和(,+∞);单调减区间为(-).当x=-时,f(x)有极大值5+4;当x=时,f(x)有极小值5-4
(2)-4<a<5+4
(3)k≤-3
解析

试题分析:(1) 解:f′(x)=3x2-6,令f′(x)=0,解得x1=-,x2.
因为当x>或x<-时,f′(x)>0;当-<x<时,f′(x)<0.
所以f(x)的单调递增区间为(-∞,-)和(,+∞);单调减区间为(-).
当x=-时,f(x)有极大值5+4
当x=时,f(x)有极小值5-4.                           ---————-3分
(2)由(1)的分析知 y=f(x)的图象的大致形状及走向如图所示,当5-4<a<5+4时,直线y=a与y=f(x)的图象有三个不同交点,即方程f(x)=a有三个不同的       6分
(3) 解:f(x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1).
因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立.
令g(x)=x2+x-5,此函数在(1,+∞)上是增函数.
所以g(x)>g(1)=-3.
所以k的取值范围是k≤-3.               10分
点评:本题考查了利用导数求函数单调区间和极值的方法,利用导数研究函数图象解决根的个数问题的方法,不等式恒成立问题的解法
举一反三
,且,则         
题型:不详难度:| 查看答案
已知函数.(其中为自然对数的底数).
(1)设曲线处的切线与直线垂直,求的值;
(2)若对于任意实数≥0,恒成立,试确定实数的取值范围;
(3)当时,是否存在实数,使曲线C:在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知函数f (x) =
(1)试判断当的大小关系;
(2)试判断曲线是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.
题型:不详难度:| 查看答案
若对任意,不等式恒成立,则实数的范围          
题型:不详难度:| 查看答案
轴上一点A分别向函数与函数引不是水平方向的切线,两切线分别与轴相交于点B和点C,O为坐标原点,记△OAB的面积为,△OAC的面积为,则+的最小值为      
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.