解:(1)f′(x)=-2bx,f′(2)=-4b,f(2)=aln2-4b,
∴-4b=-3,且aln2-4b=-6+2ln2+2,
解得a=2,b=1;
(2)f(x)=2lnx-x2,令h(x)=f(x)+m=2lnx-x2+m,
则h′(x)=,令h′(x)=0,得x=1(x=-1舍去),
在[,e]内,当x∈[,1)时,h′(x)>0,所以h(x)是增函数;
当x∈(1,e]时,h′(x)<0,所以h(x)是减函数,
则方程h(x)=0在[,e]内有两个不等实根的充要条件是
即1<m≤e2-2;
(3)g(x)=2lnx-x2-nx,g′(x)=-2x-n,
假设结论成立,则有
①-②,得
∴,
由④得,
∴,即,
即,⑤,
令(0<t<1),
则u′(t)=>0,所以u(t)在0<t<1上是增函数,
u(t)<u(1)=0,
所以⑤式不成立,与假设矛盾,
所以g′(x0)≠0。
© 2017-2019 超级试练试题库,All Rights Reserved.