已知函数f(x)=x-ax+(a-1),。(1)讨论函数的单调性;(2)若,设,(ⅰ)求证g(x)为单调递增函数;(ⅱ)求证对任意x,x,xx,有.

已知函数f(x)=x-ax+(a-1),。(1)讨论函数的单调性;(2)若,设,(ⅰ)求证g(x)为单调递增函数;(ⅱ)求证对任意x,x,xx,有.

题型:不详难度:来源:
已知函数f(x)=x-ax+(a-1)
(1)讨论函数的单调性;(2)若,设
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x,xx,有
答案
(1)当a=2时,f(x)在(0,+∞)单调递增;
当1<a<2时,f(x)在(a-1,1)单调递减,在(0,a-1),(1,+∞)单调递增;
当a>2时,f(x)在(1,a-1)单调递减,在(0,1),(a-1,+∞)单调递增.
(2)见解析.
解析

试题分析:(1)先求出函数的导函数,然后求出时的驻点,再由的大小关系讨论导函数的正负,从而确定函数的单调性;(2)(ⅰ)由得出;求出 ,由的范围得从而得出出,函数单调递增;(ⅱ)由单调递增定义可推导.
试题解析:(1)∵函数f(x)=x2-ax+(a-1)lnx,其中a>1,
∴f(x)的定义域为(0,+∞),
解得:.
①若a-1=1,即a=2时,
故f(x)在(0,+∞)单调递增.
②若0<a-1<1,即1<a<2时,
由f′(x)<0得,a-1<x<1;
由f′(x)>0得,0<x<a-1,或x>1.
故f(x)在(a-1,1)单调递减,在(0,a-1),(1,+∞)单调递增.
③若a-1>1,即a>2时,
由f′(x)<0得,1<x<a-1;由f′(x)>0得,0<x<1,或x>a-1.
故f(x)在(1,a-1)单调递减,在(0,1),(a-1,+∞)单调递增.
综上可得,当a=2时,f(x)在(0,+∞)单调递增;
当1<a<2时,f(x)在(a-1,1)单调递减,在(0,a-1),(1,+∞)单调递增;
当a>2时,f(x)在(1,a-1)单调递减,在(0,1),(a-1,+∞)单调递增.
(2) (ⅰ)
      .10分
由于1<a<5,故,即g(x)在(0, +∞) 上单调递增.                .11分
(ⅱ)由(ⅰ)知当时有,即
,当时,有 14分
举一反三
已知函数(≠0,∈R)
(Ⅰ)若,求函数的极值和单调区间;
(Ⅱ)若在区间(0,e]上至少存在一点,使得成立,求实数的取值范围.
题型:不详难度:| 查看答案
已知函数处取得极大值,在处取得最小值,满足,则的取值范围是(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知函数.
(1)若函数为奇函数,求a的值;
(2)若,直线都不是曲线的切线,求k的取值范围;
(3)若,求在区间上的最大值.
题型:不详难度:| 查看答案
已知函数.
(1)若函数为奇函数,求a的值;
(2)若函数处取得极大值,求实数a的值;
(3)若,求在区间上的最大值.
题型:不详难度:| 查看答案
已知函数及其导数,若存在,使得=,则称 的一个“巧值点”,下列函数中,有“巧值点”的函数的个数是(  )
,②,③,④,⑤
A.2B.3C.4D.5

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.