设函数。(1)求函数的最小值; (2)设,讨论函数的单调性;(3)斜率为的直线与曲线交于,两点,求证:。

设函数。(1)求函数的最小值; (2)设,讨论函数的单调性;(3)斜率为的直线与曲线交于,两点,求证:。

题型:不详难度:来源:
设函数
(1)求函数的最小值;
(2)设,讨论函数的单调性;
(3)斜率为的直线与曲线交于,两点,求证:
答案
(1).(2)当a≥0时,F(x)在(0,+∞)上是增函数;
当a<0时,F(x)在上单调递增,在上单调递减.(3)构造函数利用函数的单调性证明不等式
解析

试题分析:(1)f"(x)=lnx+1(x>0),令f"(x)=0,得
∵当时,f"(x)<0;当时,
f"(x)>0,
∴当时,.                 4分
(2)F(x)=ax2+lnx+1(x>0),
①当a≥0时,恒有F"(x)>0,F(x)在(0,+∞)上是增函数;
②当a<0时,
令F"(x)>0,得2ax2+1>0,解得
令F"(x)<0,得2ax2+1<0,解得
综上,当a≥0时,F(x)在(0,+∞)上是增函数;
当a<0时,F(x)在上单调递增,在上单调递减.    8分
(3)
要证,即证,等价于证,令
则只要证,由t>1知lnt>0,
故等价于证lnt<t﹣1<tlnt(t>1)(*).
①设g(t)=t﹣1﹣lnt(t≥1),则
故g(t)在[1,+∞)上是增函数,
∴当t>1时,g(t)=t﹣1﹣lnt>g(1)=0,即t﹣1>lnt(t>1).
②设h(t)=tlnt﹣(t﹣1)(t≥1),则h"(t)=lnt≥0(t≥1),故h(t)在[1,+∞)上是增函数,
∴当t>1时,h(t)=tlnt﹣(t﹣1)>h(1)=0,即t﹣1<tlnt(t>1).
由①②知(*)成立,得证.                 12分
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点
举一反三
设函数
(1)若函数在x=1处与直线相切.
①求实数的值;②求函数上的最大值.
(2)当时,若不等式对所有的都成立,求实数的取值范围.
题型:不详难度:| 查看答案
设定函数 (>0),且方程的两个根分别为1,4。
(Ⅰ)当=3且曲线过原点时,求的解析式;
(Ⅱ)若无极值点,求a的取值范围。
题型:不详难度:| 查看答案
是定义在上的奇函数,且,当时,有恒成立,则不等式的解集是  (   )
A.B.
C.D.

题型:不详难度:| 查看答案
已知函数,().
(1)求函数的极值;
(2)已知,函数,判断并证明的单调性;
(3)设,试比较,并加以证明.
题型:不详难度:| 查看答案
已知,若,则a的值等于 (    )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.