试题分析:(1)由是函数的一个极值点,可得 ,从而就可用用表示出 来;这样就可以用a的代数式将表达出来,令其等于零解得两个实根,注意由已知这两个实根应该不等而得到:a≠-4 ,然后通过讨论两根的大小及 的符号就可确定函数的单调区间;(2)由(1)可求得当当a>0时,在区间[0,4]上的最大值和最小值,由已知也可求得在区间[0,4]上的最大值的最小值;而存在使得成立等价于,解此不等式就可求得的取值范围. 试题解析:(1)f `(x)=-[x2+(a-2)x+b-a ]e3-x, 由,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a, 则 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x. 令f `(x)=0,得x1=3或x2=-a-1,由于x=3是极值点,所以,那么a≠-4. 当a<-4时,x2>3=x1,则 在区间(-∞,3)上,f `(x)<0, f (x)为减函数; 在区间(3,―a―1)上,f `(x)>0,f (x)为增函数; 在区间(―a―1,+∞)上,f `(x)<0,f (x)为减函数. 当a>-4时,x2<3=x1,则 在区间(-∞,―a―1)上,f `(x)<0, f (x)为减函数; 在区间(―a―1,3)上,f (x)>0,f (x)为增函数; 在区间(3,+∞)上,f `(x)<0,f (x)为减函数. (2)由(Ⅰ)知,当a>0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min{f (0),f (4) },f (3)], 而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6, 那么f (x)在区间[0,4]上的值域是[-(2a+3)e3,a+6]. 又在区间[0,4]上是增函数, 且它在区间[0,4]上的值域是[a2+,(a2+)e4], 由于(a2+)-(a+6)=a2-a+=()2≥0,所以只需且仅须 (a2+)-(a+6)<1且a>0,解得0<a<. 故a的取值范围是(0,). |