已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.(Ⅰ)如果函数=+(>0)的值域为6,+∞,求的值;(Ⅱ)研究函数=+(常

已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.(Ⅰ)如果函数=+(>0)的值域为6,+∞,求的值;(Ⅱ)研究函数=+(常

题型:不详难度:来源:
已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.
(Ⅰ)如果函数>0)的值域为6,+∞,求的值;
(Ⅱ)研究函数(常数>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).
答案
(Ⅰ)∴b=log29. (Ⅱ)该函数在(-∞,-]上是减函数, 在[-,0
上是增函数 (Ⅲ)当时,取得最大值;当取得最小值8.
解析
本题考查函数单调性的运用,解题的关键在于紧扣题干所给函数的单调性的性质,并利用其解题.
(1)因为函数y=x+(x>0)的最小值是2,则2="6,"
∴b=log29
(2)利用单调性定义可知设0<x1<x2,y2-y1=,那么得到单调性的讨论。
(3) 可以把函数推广为y=(常数a>0),其中n是正整数.
当n是奇数时,函数y=在(0,]上是减函数,在[,+∞) 上是增函数,
在(-∞,-]上是增函数, 在[-,0)上是减函数;
当n是偶数时,函数y=在(0,]上是减函数,在[,+∞) 上是增函数,
在(-∞,-]上是减函数, 在[-,0)上是增函数
举一反三
已知函数图象上一点P(2,f(2))处的切线方程为
(1)求的值;
(2) 若方程内有两个不等实根,求的取值范围(其中为自然对数的底);
(3)令,如果图象与轴交于,AB中点为,求证:
题型:不详难度:| 查看答案
设函数f(x)=4x3+ax2+bx+5在x=与x=-1时有极值.
(1)写出函数的解析式;
(2)指出函数的单调区间;
(3)求f(x)在[-1,2]上的最大值和最小值.
题型:不详难度:| 查看答案
函数的单调递减区间是
A.B.
C.D.

题型:不详难度:| 查看答案
函数的导函数的图象大致是
题型:不详难度:| 查看答案
已知函数的图象在点处的切线方程为
(Ⅰ)求函数的解析式;
(Ⅱ)若关于x的方程在区间上恰有两个相异实根,求m的取值范围。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.