(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)设的导数为,若函数的图像关于直线对称,且.(Ⅰ)求实数的值(Ⅱ)求函数的极值

(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)设的导数为,若函数的图像关于直线对称,且.(Ⅰ)求实数的值(Ⅱ)求函数的极值

题型:不详难度:来源:
(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)
的导数为,若函数的图像关于直线对称,且
(Ⅰ)求实数的值(Ⅱ)求函数的极值
答案
(I)由题设条件知由于 
(II)函数处取得极大值处取得极小值 
解析
(I)由于是二次函数,根据其对称轴为可求出a值,再利用可求出b值.
(II)在(I)的基础上可以利用导数研究其极值即可.要注意极大值和极小值的判断方法,左正右负为极大,左负右正为极小.
解:(I)因
从而关于直线对称,从而由题设条件知
又由于…………5分
(II)由(I)知


上为增函数;
上为减函数;
上为增函数;
从而函数处取得极大值处取得极小值……12 分
举一反三
设a为实数, 函数f(x)=x3-x2-x+a.
(1)求f(x)的极值;
(2)若曲线y=f(x)与x轴仅有一个交点, 求a的取值范围.
题型:不详难度:| 查看答案
、设函数,其中|t|≤1,将f(x)的最小值记为g(t).   
(1)求g(t)的表达式;     
(2)对于区间[-1,1]中的某个t,是否存在实数a,使得不等式g(t)≤成立?如果存在,求出这样的a及其对应的t;如果不存在,请说明理由.
题型:不详难度:| 查看答案
已知函数f(x)=(x2­­+bx+c)ex,其中b,cR为常数. 
(Ⅰ)若b2>4(c-1),讨论函数f(x)的单调性;
(Ⅱ)若b2≤4(c-1),且=4,试证:-6≤b≤2.
题型:不详难度:| 查看答案
(本题10分)已知函数
(1)利用函数单调性的定义,判断函数上的单调性;
(2)若,求函数上的最大值
题型:不详难度:| 查看答案
(本题12分)设函数内有极值。
(1)求实数的取值范围;
(2)若分别为的极大值和极小值,记,求S的取值范围。
(注:为自然对数的底数)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.