已知函数f(x)=1-ax+ln1x(a为实常数).(Ⅰ)当a=1时,求函数g(x)=f(x)-2x的单调区间;(Ⅱ)若函数f(x)在区间(0,2)上无极值,求

已知函数f(x)=1-ax+ln1x(a为实常数).(Ⅰ)当a=1时,求函数g(x)=f(x)-2x的单调区间;(Ⅱ)若函数f(x)在区间(0,2)上无极值,求

题型:不详难度:来源:
已知函数f(x)=1-
a
x
+ln
1
x
(a为实常数).
(Ⅰ)当a=1时,求函数g(x)=f(x)-2x的单调区间;
(Ⅱ)若函数f(x)在区间(0,2)上无极值,求a的取值范围;
(Ⅲ)已知n∈N*且n≥3,求证:ln
n+1
3
1
3
+
1
4
+
1
5
+…+
1
n
答案
(I)当a=1时,g(x)=1-2x-
1
x
+ln
1
x
,其定义域为(0,+∞),g′(x)=-2+
1
x2
-
1
x
=
-2x2-x+1
x2
=
-(2x-1)(x+1)
x2
,,
令g′(x)>0,并结合定义域知x∈(0,
1
2
)
; 令g′(x)<0,并结合定义域知x∈(
1
2
,+∞)

故g(x)的单调增区间为(0,
1
2
);单调减区间为(
1
2
,+∞)

(II)f(x)=
a
x2
-
1
x
=
a-x
x2

(1)当f′(x)≤0即a≤x在x∈(0,2)上恒成立时,a≤0,此时f(x)在(0,2)上单调递减,无极值;
(2)当f′(x)≥0即a≥x在x∈(0,2)上恒成立时,a≥2,此时f(x)在(0,2)上单调递增,无极值.
综上所述,a的取值范围为(-∞,0]∪[2,+∞).
(Ⅲ)由(Ⅱ)知,当a=1时,f′(x)=
1-x
x2
,当x∈(0,1)时,f′(x)>0,f(x)单调递增;
当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,
∴f(x)=1-
1
x
+ln
1
x
在x=1处取得最大值0.
即f(x)=1-
1
x
+ln
1
x
≤0

ln
1
x
1-x
x
,令x=
n
n+1
(0<x<1),则ln
n+1
n
1
n
,即ln(n+1)-lnn
1
n

∴ln
n+1
3
=ln(n+1)-ln3=[ln(n+1)-lnn]+[lnn-ln(n-1)]+…+(ln4-ln3)
1
n
+
1
n-1
+
1
n-2
+…+
1
3

ln
n+1
3
1
3
+
1
4
+
1
5
+…+
1
n
举一反三
已知α,β为锐角△ABC的两个内角,α≠β,可导函数f(x)满足xf"<f(x),则(  )
A.cosβf(sinα)=sinαf(cosβ)B.cosβf(sinα)<sinαf(cosβ)
C.cosβf(sinα)>sinαf(cosβ)D.cosβf(sinα)≥sinαf(cosβ)
题型:不详难度:| 查看答案
设函数f(x)=
1
3
x3-x2+ax
,g(x)=2x+b,当x=1+


2
时,f(x)取得极值.
(1)求a的值,并判断f(1+


2
)
是函数f(x)的极大值还是极小值;
(2)当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求b的取值范围.
题型:不详难度:| 查看答案
函数f(x)=
x2
2
+2x-3lnx
的单调递减区间为______.
题型:不详难度:| 查看答案
已知f(x)=ln(x+1),g(x)=
1
2
ax2+bx

(Ⅰ)若b=2,且h(x)=f(x-1)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)若a=0,b=1时,求证:f(x)-g(x)≤0对于x∈(-1,+∞)恒成立;
(III)证明:若0<x<y,则xlnx+ylny>(x+y)ln
x+y
2
题型:不详难度:| 查看答案
已知函数y=loga(2-ax)在(-1,1)上是x的减函数,则a的取值范围是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.