已知函数f(x)=m-2cosxsinx,若f(x)在(0,π2)内单调递增,则实数m的取值范围是(  )A.(-∞,2]B.(-∞,2)C.[2,+∞)D.(

已知函数f(x)=m-2cosxsinx,若f(x)在(0,π2)内单调递增,则实数m的取值范围是(  )A.(-∞,2]B.(-∞,2)C.[2,+∞)D.(

题型:临沂二模难度:来源:
已知函数f(x)=
m-2cosx
sinx
,若f(x)在(0,
π
2
)
内单调递增,则实数m的取值范围是(  )
A.(-∞,2]B.(-∞,2)C.[2,+∞)D.(2,+∞)
答案
f(x)=
m-2cosx
sinx
,得
f(x)=
(m-2cosx)sinx-(m-2cosx)(sinx)
sin2x

=
2sin2x+2cos2x-mcosx
sin2x
=
2-mcosx
sin2x

要使f(x)在(0,
π
2
)
内单调递增,则
2-mcosx≥0在x∈(0,
π
2
)
内恒成立,
m≤
2
cosx
在x∈(0,
π
2
)
内恒成立,
因为在x∈(0,
π
2
)
2
cosx
>2

所以m≤2.
故选A.
举一反三
已知函数f(x)=x3+ax2+bx.
(1)若函数y=f(x)在x=2处有极值-6,求y=f(x)的单调递减区间;
(2)若y=f(x)的导数f′(x)对x∈[-1,1]都有f′(x)≤2,求
b
a-1
的范围.
题型:日照一模难度:| 查看答案
已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在区间(1,2)上为增函数.
(I)求a的值;
(Ⅱ)试判断方程f(x)=2g(x)+m(m>-1)在(0,+∞)上解的个数,并说明理由.
题型:淄博三模难度:| 查看答案
已知函数f(x)=
ax
x2+b
在x=1处取得极值2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)在区间(m,2m+1)上是单调函数,求实数m的取值范围.
题型:不详难度:| 查看答案
已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有lnx>
1
ex
-
2
ex
成立.
题型:不详难度:| 查看答案
已知函数f(x)=lnx-ax(a∈R).
(Ⅰ) 求函数f(x)的单调区间;
(Ⅱ) 当a>0时,求函数f(x)在[1,2]上最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.