已知P:对任意a∈[1,2],不等式恒成立;Q:函数f(x)=x3+mx2+(m+6)x+1存在极大值和极小值.求使“P且Q”为真命题的m的取值范围.

已知P:对任意a∈[1,2],不等式恒成立;Q:函数f(x)=x3+mx2+(m+6)x+1存在极大值和极小值.求使“P且Q”为真命题的m的取值范围.

题型:期末题难度:来源:
已知P:对任意a∈[1,2],不等式恒成立;
Q:函数f(x)=x3+mx2+(m+6)x+1存在极大值和极小值.
求使“P且Q”为真命题的m的取值范围.
答案
解:若P真,则m2﹣10m+25≤a2+8,∴m2﹣10m+17≤a2
∵a∈[1,2],∴m∈[2,8];
若Q真,则f′(x)=3x2+2mx+m+6=0两个不相等的实数根,
∴△=4m2﹣12(m+6)>0
即m>6或m<﹣3.
Q:﹣3≤m≤6
∴当P真且Q为真时,m∈[2,6]
举一反三
已知函数f(x)=x2+x﹣ln(x+a)+3b在x=0处取得极值0.
(1)求实数a,b的值;
(II)若关于x的方程+m在区间[0,2]上恰有两个不同的实数根,求实数m的取值范围;
(III)证明:对任意的正整数n>l,不等式都成立.
题型:期末题难度:| 查看答案
已知函数f(x)=ax+bsinx,当时,f(x)取得极小值
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=f(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥f(x).则称直线l为曲线S的“上夹线”.试证明:直线l:y=x+2为曲线S:y=ax+bsinx“上夹线”.
题型:同步题难度:| 查看答案
设x1,x2分别是函数f(x)=﹣2x3+3(1﹣2a)x2+12ax﹣1的极小值点和极大值点.已知=x2,求a的值及函数的极值.
题型:月考题难度:| 查看答案
对于函数f(x)=x3+ax2﹣x+1的极值情况,3位同学有下列看法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;这三种看法中,正确的个数是[     ]
A.0个
B.1个
C.2个
D.3个
题型:月考题难度:| 查看答案
若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于(    ).
题型:月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.