已知函数f(x)=ax2+ln(x+1).(1)求函数g(x)=f(x)-ax2-x的单调区间及最大值;(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求

已知函数f(x)=ax2+ln(x+1).(1)求函数g(x)=f(x)-ax2-x的单调区间及最大值;(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求

题型:不详难度:来源:
已知函数f(x)=ax2+ln(x+1).
(1)求函数g(x)=f(x)-ax2-x的单调区间及最大值;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(3)求证:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

参考导数公式:(ln(x+1))=
1
x+1
答案
(1)因为g(x)=f(x)-ax2-x=ax2+ln(x+1)-ax2-x=ln(x+1)-x(x>-1),
所以g(x)=
1
x+1
-1=-
x
x+1
(x>-1)

当-1<x<0时,g(x)>0,当x>0时,g(x)<0,
故函数g(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).
g(x)max=g(0)=ln1=0.
(2)因为当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可.
g(x)=2ax+
1
x+1
-1=
x[2ax+(2a-1)]
x+1

①当a=0时,g(x)=
-x
x+1
,当x>0时,g(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.
②当a>0时,由g(x)=
x[2ax+(2a-1)]
x+1
=0
,因x∈[0,+∞),所以x=
1
2a
-1

1°若
1
2a
-1<0
,即a>
1
2
时,在区间(0,+∞)上,g(x)>0,则g(x)在(0,+∞)上单调递增,
g(x)在[0,+∞)上无最大值,此时不满足条件;
2°若
1
2a
-1≥0
,即0<a
1
2
时,函数g(x)在(0,
1
2a-1
)
上单调递减,在区间(
1
2a-1
,+∞)
上单调递增,同样g(x)在[0,+∞)上无最大值,不满足条件.
③当a<0时,由g(x)=
x[2ax+(2a-1)]
x+1
,∵x∈[0,+∞),∴2ax+(2a-1)<0,
∴g(x)<0,故函数g(x)在[0,+∞)上单调递减,故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(3)由(1)知ln(x+1)≤x,令x=
1
n2
,所以ln(1+
1
n2
)≤
1
n2
=
1
n•n
1
(n-1)n
=
1
n-1
-
1
n

所以ln(1+
1
22
)+ln(1+
1
32
)+…+ln(1+
1
n2
)
(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n
)=1-
1
n
<1

所以ln(1+
1
22
)(1+
1
32
)…(1+
1
n2
)<1=lne

所以(1+
1
22
)(1+
1
32
)…(1+
1
n2
)<e
举一反三
现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x(cm),高为y(cm),体积为V(cm3
(1)求出x与y的关系式;
(2)求该铁皮盒体积V的最大值.
题型:不详难度:| 查看答案
设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[
1
e
,e]上的最大值.
题型:不详难度:| 查看答案
某出版社出版一读物,一页上所印文字占去150cm2,上、下要留1.5cm空白,左、右要留1cm空白,出版商为节约纸张,应选用怎样的尺寸的页面?
题型:不详难度:| 查看答案
某地方政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区,已知AB⊥BC,OABC,且AB=BC=6km,AO=3km,曲线段OC是二次函数y=ax2图象的一段,如果要使矩形的相邻两边分别落在AB,BC上,且一个顶点落在曲线段OC上,问应如何规划才能使矩形工业园区BQPN的用地面积最大?并求出最大的用地面积.
题型:不详难度:| 查看答案
如图,A,B是函数y=ax(a>1)在y轴右侧图象上的两点,分别过A,B作y轴的垂线与y轴交于E,F两点,与函数y=ex的图象交于C,D两点,且A是CE的中点.
(Ⅰ)求a的值;
(Ⅱ)当直线BC与y轴平行时,设B点的横坐标为x,四边形ABDC的面积为f(x),求f(x)的解析式;
(Ⅲ)若对任意的正数b,关于x的不等式
2f(x)
ex-1
3exln
xb
em
在区间[1,e]上恒成立,求实数m的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.