已知函数f(x)=ax3+bx2+cx在点x0处取得极大值4,其导函数y=f′(x)的图象经过点(0,0),(2,0),如图,(1)求a,b,c的值;(2)若x

已知函数f(x)=ax3+bx2+cx在点x0处取得极大值4,其导函数y=f′(x)的图象经过点(0,0),(2,0),如图,(1)求a,b,c的值;(2)若x

题型:不详难度:来源:
已知函数f(x)=ax3+bx2+cx在点x0处取得极大值4,其导函数y=f′(x)的图象经过点(0,0),(2,0),如图,
(1)求a,b,c的值;
(2)若x∈[-1,1],求f(x)的最大值和最小值.
答案
(1)f′(x)=3ax2+2bx+c
由导函数的图象知,f(x)在(-∞,0)和(2,+∞)递减;在(0,2)上递增
所以当x=2时取得极大值
所以有





c=0
12a+4b+c=0
8a+4b+2c=4

解得a=-1,b=3,c=0
(2)由(1)知,f(x))=-x3+3x2,且函数在x=0处有极小值
因为f(0)=0;f(-1)=4,f(1)=2
所以f(x)的最大值4;最小值为0.
举一反三
已知函数f(x)=x2+
2
x
,g(x)=(
1
2
)x+m
,若∀x1∈[1,2],∃x2∈[-1,1],使得f(x1)≥g(x2),则实数m的取值范围是______.
题型:不详难度:| 查看答案
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=
2
3
时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
题型:不详难度:| 查看答案
已知函数f(x)=ax2+ln(x+1).
(1)求函数g(x)=f(x)-ax2-x的单调区间及最大值;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(3)求证:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

参考导数公式:(ln(x+1))=
1
x+1
题型:不详难度:| 查看答案
现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x(cm),高为y(cm),体积为V(cm3
(1)求出x与y的关系式;
(2)求该铁皮盒体积V的最大值.
题型:不详难度:| 查看答案
设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[
1
e
,e]上的最大值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.