已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x∈(0,+∞)时,f(x)=ax+2lnx,(a∈R)(1)求f(x)的解析式;(2)是否存在负实

已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x∈(0,+∞)时,f(x)=ax+2lnx,(a∈R)(1)求f(x)的解析式;(2)是否存在负实

题型:不详难度:来源:
已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x∈(0,+∞)时,f(x)=ax+2lnx,(a∈R)
(1)求f(x)的解析式;
(2)是否存在负实数a,使得当x∈[-e,0)时,f(x)的最小值是4?如果存在,求出a的值;如果不存在,请说明理由.
(3)对x∈D如果函数F(x)的图象在函数G(x)的图象的下方,则称函数F(x)在D上被函数G(x)覆盖.求证:若a=1时,函数f(x)在区间x∈(1,+∞)上被函数g(x)=x3覆盖.
答案
(1)当x∈(-∞,0),则-x>0,由已知得,
f(-x)=-ax+2ln(-x)=-f(x),
∴f(x)=ax-2ln(-x),
f(x)





ax+2lnx        (x>0)
ax-2ln(-x)     (x<0)

(2)假设存在a<0,满足题意,∵f(x)=ax-2ln(-x),x∈[-∞,0)
∴f′(x)=a+
2
x
=
a(x+
2
a
)
x
,x∈[-∞,0),
令f′(x)=0,x=-
2
a

当-
2
a
-e,即a<
2
e
时,f(x)在(-e,-
2
a
)是减函数,在(-
2
a
,0)为增函数,
∴f(x)min=f(-
2
a
)=4,解得a=-2e,
当-
2
a
≤-e,即0>a≥
2
a
时,f(x)在(-e,0)上增函数,
∴f(x)min=f(-e)=4,解得a=-
6
e
<-
2
e
矛盾;
综上所诉,存在a=-2e满足题意.
(3)证明:由题意知,只需证x3>x+2lnx对x∈(1,+∞)恒成立,
令h(x)=x3-x-2lnx(x>1),
∴h′(x)=3x2-1-
2
x
=
(x-1)(3x2+3x+2)
x

∵x>1,∴x-1>0,3x2+3x+2>0,
∴h′(x)>0,对x∈(1,+∞)恒成立,
∴x>1时,h(x)>h(1)=0
∴h(x)>0⇔x3>x+2lnx对x∈(1,+∞)恒成立,即证;
举一反三
设函数f(x)=(1+x)2-ln(1+x)2
(1)求函数f(x)的单调区间;
(2)当x∈[
1
e
-1,e-1]
时,不等式f(x)<m恒成立,求实数m的取值范围;
(3)关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取值范围. (e 为自然常数,约等于2.718281828459)
题型:不详难度:| 查看答案
已知函数f(x)=x3+ax2+bx+c的图象经过原点,且在x=1处取得极值,直线y=2x+3到曲线y=f(x)在原点处的切线所成的角为45°.
(1)求f(x)的解析式;
(2)若对于任意实数α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.
题型:荆州模拟难度:| 查看答案
求函数f(x)=x3-12x在[-3,3]上的最大值与最小值.
题型:不详难度:| 查看答案
函数f(x)=ex-x (e为自然对数的底数)在区间[-1,1]上的最大值是(  )
A.1+
1
e
B.1C.e+1D.e-1
题型:不详难度:| 查看答案
已知函数f(x)=lnx,g(x)=
1
2
x2-2x.
(1)设h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求h(x)的最大值;
(2)证明:当0<b<a时,求证:f(a+b)-f(2b)<
b-a
2a

(3)设k∈Z,当x>1时,不等式k(x-1)<xf(x)+3g′(x)+4恒成立,求k的最大值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.