函数f(x)=13x3-2x2+3x-2在区间[0,2]上最大值为______.

函数f(x)=13x3-2x2+3x-2在区间[0,2]上最大值为______.

题型:不详难度:来源:
函数f(x)=
1
3
x3-2x2+3x-2在区间[0,2]上最大值为______.
答案
f′(x)=x2-4x+3=(x-1)(x-3),
令f′(x)=0,得x=1或x=3(舍),
当0≤x<1时,f′(x)>0,当1<x≤2时,f′(x)<0,
所以x=1为函数f(x)的极大值点,且是区间[0,2]上最大值点,
所以f(x)在区间[0,2]上最大值为f(1)=-
2
3

故答案为:-
2
3
举一反三
某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的定价为______元时,利润最大.
题型:不详难度:| 查看答案
设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为______.
题型:不详难度:| 查看答案
某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系为R=R(x)=





400x-
1
2
x2,(0≤x≤400)
80000,(x>400)
,则总利润最大时,每年生产的产品数量是______.
题型:不详难度:| 查看答案
某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为______.
题型:不详难度:| 查看答案
函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=
f(x)
x
在区间[1,+∞)上一定有______(填最大或最小值).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.