如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由B沿棱柱侧面经过棱C C1到点A1的最短路线长为,设这条最短路线与CC1的交点为D.(

如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由B沿棱柱侧面经过棱C C1到点A1的最短路线长为,设这条最短路线与CC1的交点为D.(

题型:不详难度:来源:
如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由
B沿棱柱侧面经过棱C C1到点A1的最短路线长为,设这条最短路线与CC1的交
点为D.
(1)求三棱柱ABC-A1B1C1的体积;
(2)在平面A1BD内是否存在过点D的直线与平面ABC平行?证明你的判断;
(3)证明:平面A1BD⊥平面A1ABB1
答案
(1)  (2)在平面A1BD内存在过点D的直线与平面ABC平行  
(3)证明见解析
解析
(1)如图,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,点B运动到点B2的位置,连接A1B2,则A1B2就是由点B沿棱柱侧面经过棱CC1到点A1的最短路线。                                            ……………………………………1分
设棱柱的棱长为,则B2C=AC=AA1,
∵CD∥AA1       ∴D为CC1的中点,……………………………2分
在Rt△A1AB2中,由勾股定理得
 解得,……………………4分
 ……………………………………6分
(2)设A1B与AB1的交点为O,连结BB2,OD,则……………………………7分
平面平面 ∴平面
即在平面A1BD内存在过点D的直线与平面ABC平行   ……………………………9分
(3)连结AD,B1D∵
  ∴……………………………11分
 ∵    ∴平面A1ABB1     ……………………………13分
又∵平面A1BD   ∴平面A1BD⊥平面A1ABB1  ……………………………………14分
举一反三
在四棱锥中,,,底面, ,直线与底面角,点分别是的中点.
(1)求二面角的大小;
(2)当的值为多少时,为直角三角形.
题型:不详难度:| 查看答案
一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(  )
                      
题型:不详难度:| 查看答案
一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与顶点组成的平面(相同的平面算一个)构成的“正交线面对”的个数是
A.24B.36C.44D.56

题型:不详难度:| 查看答案
如图,在四棱锥中,底面是正方形,底面, 点的中点,,且交于点 .
(I)求证:平面
(II)求二面角的余弦值大小;
(III)求证:平面⊥平面.
题型:不详难度:| 查看答案
如图,
已知正三棱柱的底面边长是2,D是侧棱的中点,平面ABD和平面的交线为MN.
 (Ⅰ)试证明
 (Ⅱ)若直线AD与侧面所成的角为,试求二面角的大小.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.