试题分析:(1)证明线线垂直,一般利用线面垂直性质与判定定理进行转化. 因为四边形ABCD是菱形,所以AC⊥BD.又因为PD⊥平面ABCD,所以PD⊥AC.因而AC⊥平面PDB,从而AC⊥DE.(2)设AC与BD相交于点F.连EF.由(1),知AC⊥平面PDB,所以AC⊥EF.所以S△ACE=AC·EF,因此△ACE面积最小时,EF最小,则EF⊥PB.由△PDB∽△FEB,解得PD=,因为PD⊥平面ABCD,所以VP—ABCD=S□ABCD·PD=×24×=. (1)证明:连接BD,设AC与BD相交于点F. 因为四边形ABCD是菱形,所以AC⊥BD. 又因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC. 而AC∩BD=F,所以AC⊥平面PDB. E为PB上任意一点,DE平面PBD,所以AC⊥DE. (2)连EF.由(1),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF. S△ACE=AC·EF,在△ACE面积最小时,EF最小,则EF⊥PB. S△ACE=3,×6×EF=3,解得EF=1. 由△PDB∽△FEB,得.由于EF=1,FB=4,, 所以PB=4PD,即.解得PD= VP—ABCD=S□ABCD·PD=×24×=. |