如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.(1)求证:AC⊥DE

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.(1)求证:AC⊥DE

题型:不详难度:来源:
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.

(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.
答案
(1)详见解析,(2).
解析

试题分析:(1)证明线线垂直,一般利用线面垂直性质与判定定理进行转化. 因为四边形ABCD是菱形,所以AC⊥BD.又因为PD⊥平面ABCD,所以PD⊥AC.因而AC⊥平面PDB,从而AC⊥DE.(2)设AC与BD相交于点F.连EF.由(1),知AC⊥平面PDB,所以AC⊥EF.所以S△ACE=AC·EF,因此△ACE面积最小时,EF最小,则EF⊥PB.由△PDB∽△FEB,解得PD=,因为PD⊥平面ABCD,所以VP—ABCD=S□ABCD·PD=×24×
(1)证明:连接BD,设AC与BD相交于点F.
因为四边形ABCD是菱形,所以AC⊥BD.
又因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.
而AC∩BD=F,所以AC⊥平面PDB.
E为PB上任意一点,DE平面PBD,所以AC⊥DE.
(2)连EF.由(1),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF. S△ACE=AC·EF,在△ACE面积最小时,EF最小,则EF⊥PB.
S△ACE=3,×6×EF=3,解得EF=1. 
由△PDB∽△FEB,得.由于EF=1,FB=4,
所以PB=4PD,即.解得PD=
VP—ABCD=S□ABCD·PD=×24×
举一反三
三角形中, ,以边所在直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体的体积为(   )
A.B.C.D.

题型:不详难度:| 查看答案
菱形中,,且,现将三角形沿着折起形成四面体,如图所示.

(1)当为多大时,?并证明;
(2)在(1)的条件下,求点到面的距离.
题型:不详难度:| 查看答案
正方体ABCD﹣A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中错误的是(  )
A.AC⊥BE
B.B1E∥平面ABCD
C.三棱锥E﹣ABC的体积为定值
D.直线B1E⊥直线BC1

题型:不详难度:| 查看答案
已知三棱锥中,,直线与底面所成角为,则此时三棱锥外接球的表面积为(  )
A.B.C.D.

题型:不详难度:| 查看答案
如图,在三棱锥中,底面,且
的中点,且交于点.
(1)求证:平面
(2)当时,求三棱锥的体积.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.