如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分别是AD,PC的中点。(1)证明:PC⊥平面BEF;(2

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分别是AD,PC的中点。(1)证明:PC⊥平面BEF;(2

题型:陕西省高考真题难度:来源:
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分别是AD,PC的中点。
(1)证明:PC⊥平面BEF;
(2)求平面BEF与平面BAP夹角的大小。
答案
解:(1)如图,以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系。
∵AP=AB=2,BC=AD=,四边形ABCD是矩形
∴A,B,C,D,P的坐标为A(0,0,0),B(2,0,0),
又E,F分别是AD,PC的中点



∴PC⊥BF,PC⊥EF,
又BF∩EF=F,
∴PC⊥平面BEF。(2)由(1)知平面BEF的法向量
平面BAP的法向量

设平面BEF与平面BAP的夹角为θ

∴θ=45°
∴平面BEF与平面BAP的夹角为45°。
举一反三
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,
(Ⅰ)求证:PC⊥BC;
(Ⅱ)求点A到平面PBC的距离.
题型:江苏高考真题难度:| 查看答案
如图,是半径为a的半圆,AC为直径,点E为的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=a,FE=a,
(Ⅰ)证明:EB⊥FD;
(Ⅱ)已知点Q,R分别为线段FE,FB上的点,使得FQ=FE,FR=FB,求平面BED与平面RQD所成二面角的正弦值。
题型:广东省高考真题难度:| 查看答案
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1,
(Ⅰ)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算的值;
(Ⅱ)求二面角O-AC-B的平面角的余弦值.
题型:湖北省高考真题难度:| 查看答案
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(Ⅰ)证明:AB=AC;
(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小。
题型:高考真题难度:| 查看答案
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC,
(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的大小;
(Ⅲ)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
题型:北京高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.