在正四棱柱ABCDA1B1C1D1中,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为(  )A.B.C.D.

在正四棱柱ABCDA1B1C1D1中,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为(  )A.B.C.D.

题型:不详难度:来源:
在正四棱柱ABCDA1B1C1D1中,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为(  )
A.B.C.D.

答案
C
解析
连接BA1,因为CD1∥BA1,所以∠A1BE即为异面直线BE与CD1所成的角,令AA1=2AB=2,则EB=,A1E=1,A1B=,故由余弦定理得cos∠A1BE=,即异面直线BE与CD1所成角的余弦值为
举一反三
设m、n是不同的直线,α、β是不同的平面,下列四个命题中正确的是(  )
A.若m∥α,n∥α,则m∥n
B.若m⊥β,n⊥β,则m∥n
C.若α⊥β,m⊂α,则m⊥β
D.若m⊂α,n⊂α,m∥β,n∥β,则α∥β

题型:不详难度:| 查看答案
如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.

(1)求证:BD⊥AB1
(2)求二面角B—AD—B1的余弦值.
题型:不详难度:| 查看答案
在等腰梯形ABCD中,,N是BC的中点.如图所示,将梯形ABCD绕AB逆时针旋转,得到梯形

(1)求证:平面
(2)求证:平面
题型:不详难度:| 查看答案
下列命题正确的是(     ).
A.a//b, a⊥αa⊥b  B.a⊥α, b⊥αa//b
C.a⊥α, a⊥bb//α  D.a//α,a⊥bb⊥α

题型:不详难度:| 查看答案
已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EFAB,则EF与CD所成的角为(   ).

A.        B.      C.        D.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.