△ABC两直角边分别为3、4,PO⊥面ABC,O是△ABC的内心,PO=,则点P 到△ABC的斜边AB的距离是(    )                   

△ABC两直角边分别为3、4,PO⊥面ABC,O是△ABC的内心,PO=,则点P 到△ABC的斜边AB的距离是(    )                   

题型:不详难度:来源:
△ABC两直角边分别为3、4,PO⊥面ABC,O是△ABC的内心,PO=,则点P 到△ABC的斜边AB的距离是(    )   
                                
A.B.C.D.2

答案
D
解析

试题分析:
△ABC中,∵AC=4,BC=3,
∴AB=5,
过O作OE⊥AB,垂足是E,作OF⊥BC,垂足是F,作OD⊥AC,交AC于D,
∵O是△ABC的内心,
∴OE=OF=OD=r,(r是△ABC内切圆半径),
∴DC=CF=r,AD=AE=4-r,BF=BE=3-r,
∴AB=3-r+4-r=5,解得r=1,
∴OE=1,
∵PO⊥面ABC,O是△ABC的内心,PO=" 3" ,OE⊥AB,
∴PE⊥AB,
.
∴点P到△ABC的斜边AB的距离是2.
点评:本题考查空间中点到直线的距离的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平
面问题.
举一反三
如图,平面α⊥平面βAαBβAB与平面α所成的角为,过AB分别作两平面交线的垂线,垂足为A′、B′,若,则AB与平面β所成的角的正弦值是(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知六棱锥的底面是正六边形,,则直线所成的角为         
题型:不详难度:| 查看答案
正方体的棱线长为1,线段上有两个动点E,F,且,则三棱锥的体积为           
题型:不详难度:| 查看答案
已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,
E是侧棱AA1的中点,求

(1)求异面直线与B1E所成角的大小;
(2)求四面体的体积.
题型:不详难度:| 查看答案
如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
   
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.