若正四棱柱的底面边长为2,高为4,则异面直线所成角的正切值是_________________.

若正四棱柱的底面边长为2,高为4,则异面直线所成角的正切值是_________________.

题型:不详难度:来源:
若正四棱柱的底面边长为2,高为4,则异面直线所成角的正切值是_________________.
答案
    
解析

试题分析:根据正四棱柱的几何特征,我们易根据AD∥BC,得到∠D1BC即为异面直线BD1与AD所成角,根据已知中正四棱柱ABCD-A1B1C1D1的底面边长为2,高为 ,求出△D1BC中各边的长,解△D1BC即可得到答案.
∵AD∥BC∴∠D1BC即为异面直线BD1与AD所成角连接D1C,在△D1BC中,∵正四棱柱ABCD-A1B1C1D1的底面边长为2,高为4∴D1B=2,BC=2,D1C=∴cos∠D1BC=,故异面直线BD1与AD所成角的正切值为
故答案为
点评:解决该试题的关键是根据已知条件确定找到两条异面直线夹角,易根据AD∥BC,得到∠D1BC即为异面直线BD1与AD所成角
举一反三
下列叙述中错误的是(    )
A.若,则
B.三点确定一个平面;
C.若直线,则直线能够确定一个平面;
D.若,则.

题型:不详难度:| 查看答案
已知平面平面,线段与线段交于点,若,则= (    )
A.B.C.D.

题型:不详难度:| 查看答案
已知两条不同直线,两个不同平面,给出下列命题:
(1)若,则;(2)若,则
(3)若,则平行于内的所有直线;(4)若
(5)若在平面内的射影互相垂直,则
其中正确命题的序号是                (把你认为正确命题的序号都填上).
题型:不详难度:| 查看答案
(本小题满分12分) 如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点
(1) 证明//平面
(2) 证明⊥平面
(3) 求二面角的大小。
题型:不详难度:| 查看答案
( )已知两个不同的平面,能判定//的条件是
A.分别平行于直线B.分别垂直于直线
C.分别垂直于平面D.内有两条直线分别平行于

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.