如图,已知直三棱柱A1B1C1-ABC中,D为AB的中点,A1D⊥AB1,且AC=BC,(1)求证:A1C⊥AB1;(2)若CC1到平面A1ABB1的距离为1,

如图,已知直三棱柱A1B1C1-ABC中,D为AB的中点,A1D⊥AB1,且AC=BC,(1)求证:A1C⊥AB1;(2)若CC1到平面A1ABB1的距离为1,

题型:不详难度:来源:
如图,已知直三棱柱A1B1C1-ABC中,D为AB的中点,A1D⊥AB1,且AC=BC,
(1)求证:A1C⊥AB1
(2)若CC1到平面A1ABB1的距离为1,AB1=2


6
A1D=2


3
,求三棱锥A1-ACD的体积;
(3)在(2)的条件下,求点B到平面A1CD的距离.
答案
(1)证明:在△CAB中,因为AC=BC,D为AB的中点,∴CD⊥AB.
又∵面ABB1A1⊥面ABC,且面ABB1A∩面ABC=AB,∴CD⊥平面ABB1A1,∴A1D是A1C在平面ABB1A上的射影.
∵AB1⊥A1D,由三垂线定理可得 A1C⊥AB.
(2)由(1)知CD=1,在Rt△AA1D及Rt△AA1B中,由A1D=2


3
AB1=2


6
,可求得AA1=2


2
,AD=2.
V三棱锥A1-ACD=
1
3
•(
1
2
AD•CD)•AA1=
1
6
×2×1×2


2
=
2


2
3

(3)∵AB与平面A1DC相交于点D,且D为AB的中点,∴点B到平面A1CD的距离为点A到平面A1CD的距离,
过A作AH⊥A1D于H,∵面ADA1⊥面A1DC,∴AH⊥面ADC,∴AH即为所求.
在Rt△AA1D中,AA1=2


2
,AD=2,A1D=2


3
,∴AH=
AD•AA1
A1D
=
2×2


2
2


3
=
2
3


6

∴点B到平面A1CD的距离为
2
3


6
举一反三
(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
4
5
?若存在,求出线段CQ的长;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知平面α的一个法向量


n
=(-2,-2,1)
,点A(-1,3,0)在α内,则点P(-2,1,2)到α的距离为______.
题型:不详难度:| 查看答案
如图,已知矩形ABCD,M、N分别是AD、BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P是DN上一动点,求P到BM距离的最小值.
题型:不详难度:| 查看答案
长方体中ByD-中1B1y1D1中,∠中B中1=10°,中中1=1,则中中1与By1间的距离为(  )
A.2B.


3
C.


2
D.1
题型:不详难度:| 查看答案
在边长为2的正方体ABCD-A1B1C1D1中,E是BC的中点,F是DD1的中点.
(1)求证:CF平面A1DE;
(2)求点A到平面A1DE的距离.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.