已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平面ABCD,F是线段BC的中点.H为PD中点.(1)证明:FH∥面PAB;(2)

已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平面ABCD,F是线段BC的中点.H为PD中点.(1)证明:FH∥面PAB;(2)

题型:期末题难度:来源:
已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平面ABCD,F是线段BC的中点.H为PD中点.
(1)证明:FH∥面PAB;
(2)证明:PF⊥FD;
(3)若PB与平米ABCD所成的角为45°,求二面角A﹣PD﹣F的余弦值.
答案

(1)证明:取PA的中点G,连接GB,GH,则
∵底面ABCD是矩形,H为PD中点
∴GH∥BF,GH=BF
∴四边形BFHG是平行四边形
∴FH∥BG
∵FH面PAB,BG面PAB
∴FH∥面PAB;
(2)证明:连接AF,则AF= ,DF= 
 ∵AD=2a,
∴DF2+AF2=AD2
∴DF⊥AF
∵PA⊥平面ABCD,
∴DF⊥PA,
又PA∩AF=A,
∴DF⊥平面PAF,
∵PF平面PAF,
∴DF⊥PF
(3)∵PA⊥平面ABCD,
∴∠PBA是PB与平面ABCD所成的角,且∠PBA=45°.
∴PA=AB=a
取AD的中点M,则FM⊥AD,FM⊥平面PAD,
在平面PAD中,过M作MN⊥PD于N,连接FN,
则PD⊥平面FMN,
则∠MNF即为二面角A﹣PD﹣F的平面角
∵Rt△MND∽Rt△PAD,
∴MN:PA=MD:PD,
∵PA=a,MD=a,PD= a,且∠FMN=90°
∴MN=a,FN=a,
∴cos∠MNF=MN:FN=


举一反三
如图,已知三棱锥O﹣ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A﹣BE﹣C的余弦值.
题型:期末题难度:| 查看答案
如图,在直三棱柱ABC﹣A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA.
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为 ,并求此时二面角A﹣PC﹣B的余弦值.  
题型:月考题难度:| 查看答案
如图,在三棱锥P-ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC
(1)求直线PC与平面ABC所成角的大小;
(2)求二面角B-AP-C的大小。
题型:高考真题难度:| 查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1。
(1)证明:PC⊥AD;
(2)求二面角A-PC-D的正弦值;
(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长。
题型:高考真题难度:| 查看答案
一个几何体是由圆柱ADD1A1和三棱锥E﹣ABC组合而成,点A、B、C在圆柱上底面圆O的圆周上,EA⊥平面ABC,AB⊥AC,AB=AC,其正视图、侧视图如图所示
(1)求证:AC⊥BD;
(2)求锐二面角A﹣BD﹣C的大小.
题型:期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.