高为5 m和3 m的两根旗杆竖在水平地面上,且相距10 m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨

高为5 m和3 m的两根旗杆竖在水平地面上,且相距10 m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨

题型:不详难度:来源:
高为5 m和3 m的两根旗杆竖在水平地面上,且相距10 m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.
答案
4x2+4y2-85x+100=0
解析
P(x,y),依题意有,化简得P点轨迹方程为4x2+4y2-85x+100=0.
举一反三
已知AB为两定点,动点MA与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线.
题型:不详难度:| 查看答案
已知动圆过定点,且与定直线相切.
(1)求动圆圆心的轨迹C的方程;
(2)若是轨迹C上的两不同动点,且. 分别以为切点作轨迹C的切线,设其交点Q,证明为定值.
题型:不详难度:| 查看答案
给定锐角三角形PBC.设AD分别是边PBPC上的点,连接ACBD,相交于点O. 过点O分别作OEABOFCD,垂足分别为EF,线段BCAD的中点分别为M,N.
(1)若ABCD四点共圆,求证:
(2)若,是否一定有ABCD四点共圆?证明你的结论.
题型:不详难度:| 查看答案
与圆x2+y2-4y=0外切, 又与x轴相切的圆的圆心轨迹方程是 (        ). 
A.y2=8xB.y2=8x (x>0) 和y=0
C.x2=8y (y>0) D.x2=8y (y>0) 和x="0" (y<0)

题型:不详难度:| 查看答案
已知一动圆M,恒过点F,且总与直线相切.
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)探究在曲线C上,是否存在异于原点的两点,当时,
直线AB恒过定点?若存在,求出定点坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.