椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.(1)求椭圆和抛物线的方程;(2)过点F的

椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.(1)求椭圆和抛物线的方程;(2)过点F的

题型:不详难度:来源:
椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.
答案
(1)(2)-1(3)见解析
解析

试题分析:
(1)根据题意设出椭圆的方程,题目已知离心率即可得到的值,根据椭圆的几何性质,短轴端点与两焦点构成的三角形以焦距为底边长,以短半轴长为高,即该三角形的面积为,再根据之间的关系即可求出的值,得到椭圆的标准方程.抛物线的交点在x轴的正半轴,故抛物线的焦点为椭圆的右顶点,即可求出得到抛物线的方程.
(2)讨论直线AB的斜率,当斜率不存在时与y轴没有交点,所以不符合题意,则斜率存在,设直线AB的斜率为k得到直线AB的方程,联立直线与抛物线的方程得到AB两点横坐标的韦达定理,把向量的横坐标带入向量的坐标表示得到之间的关系为反解,带入,利用(韦达定理)带入即可得到为定值.
(3)设出P,Q两点的坐标,则可以得到的坐标,带入条件得到P,Q横纵坐标之间的关系,因为P,Q在椭圆上,则满足椭圆的方程,这两个条件得到的三个式子相加配方即可证明点S在椭圆上,即满足椭圆的方程.
试题解析:
(1)由题意,椭圆的方程为,又
解得,∴椭圆的方程是.由此可知抛物线的焦点为,得,所以抛物线的方程为.      4分
(2)是定值,且定值为,由题意知,
直线的斜率存在且不为,设直线的方程为,
联立方程组
消去得:,由,整理得可得
.      9分
(3)设
 ①
将点坐标带入椭圆方程得, ② ③
由①+②+③得
所以点满足椭圆的方程,所以点在椭圆上.   13分
举一反三
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且

(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
题型:不详难度:| 查看答案
已知是椭圆,上除顶点外的一点,是椭圆的左焦点,若 则点到该椭圆左焦点的距离为(   )
A.B.C.D.

题型:不详难度:| 查看答案
椭圆的焦点为,点在椭圆上,如果线段的中点在轴上,那么的(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆)的右焦点,右顶点,且

(1)求椭圆的标准方程;
(2)若动直线与椭圆有且只有一个交点,且与直线交于点,问:是否存在一个定点,使得.若存在,求出点坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,设曲线C1所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.Ml上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若Ml与椭圆C2的交点,求△AMB的面积的最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.