设椭圆方程为x2+=1,过点M(0,1)的直线l交椭圆于A,B两点,O是坐标原点,点P满足=(+),当l绕点M旋转时,动点P的轨迹方程为     .

设椭圆方程为x2+=1,过点M(0,1)的直线l交椭圆于A,B两点,O是坐标原点,点P满足=(+),当l绕点M旋转时,动点P的轨迹方程为     .

题型:不详难度:来源:
设椭圆方程为x2+=1,过点M(0,1)的直线l交椭圆于A,B两点,O是坐标原点,点P满足=(+),当l绕点M旋转时,动点P的轨迹方程为     .
答案
4x2+y2-y=0
解析
【思路点拨】设直线l的斜率为k,用参数法求解,但需验证斜率不存在时是否符合要求.
直线l过点M(0,1),当斜率存在时,设其斜率为k,则l的方程为y=kx+1.
设A(x1,y1),B(x2,y2),
由题设可得点A,B的坐标(x1,y1),(x2,y2)是方程组的解,
将①代入②并化简得(4+k2)x2+2kx-3=0,
所以
于是=(+)=(,)
=(,).
设点P的坐标为(x,y),则消去参数k得4x2+y2-y=0, ③
当斜率不存在时,A,B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方程为4x2+y2-y=0.
【方法技巧】利用参数法求轨迹方程的技巧
参数法是求轨迹方程的一种重要方法,其关键在于选择恰当的参数.一般来说,选参数时要注意:
①动点的变化是随着参数的变化而变化的,即参数要能真正反映动点的变化特征;②参数要与题设的已知量有着密切的联系;③参数要便于轨迹条件中的各种相关量的计算,也要便于消去.常见的参数有角度、斜率、点的横坐标、纵坐标等.
举一反三
已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.
(1)求椭圆的标准方程.
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
题型:不详难度:| 查看答案
已知线段AB的两个端点A,B分别在x轴、y轴上滑动,|AB|=3,点M满足2=.
(1)求动点M的轨迹E的方程.
(2)若曲线E的所有弦都不能被直线l:y=k(x-1)垂直平分,求实数k的取值范围.
题型:不详难度:| 查看答案
已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为(  )
A.3  B.2  C.2  D.4

题型:不详难度:| 查看答案
设F1,F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P,Q两点,当四边形PF1QF2的面积最大时,·的值等于(  )
A.0B.2C.4D.-2

题型:不详难度:| 查看答案
已知任意k∈R,直线y-kx-1=0与椭圆+=1恒有公共点,则实数m的取值范围是(  )
A.(0,1)B.(0,5)
C.[1,5)∪(5,+∞)D.[1,5)

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.