抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB

抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB

题型:不详难度:来源:
抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.

(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
答案
(1) (2)-1
解析

试题分析:(1)由抛物线的准线方程,求出p即可;
(2)由直线BC方程求出x1和x2之间的关系式,然后用x1和x2表示出D点的坐标,
即可求出直线CD的斜率.
试题解析:(1)因为椭圆N:的左焦点为(,0),
所以,解得p=1,所以抛物线M的方程为.
(2)由题意知 A(),因为,所以.由于t>0,所以t= ①
由点B(0,t),C( )的坐标知,直线BC的方程为
由因为A在直线BC上,故有,将①代入上式,得,解得,又因为D( ),所以直线CD的斜率为
kCD====-1.
举一反三
椭圆C:的左右焦点分别为F1,F2,P为椭圆上异于端点的任意的点,PF1,PF2的中点分别为M,N,O为坐标原点,四边形OMPN的周长为2,则△的周长是(    )
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆相交于四点,设原点到四边形的一边距离为,试求满足的条件.
题型:不详难度:| 查看答案
若椭圆的右焦点与抛物线的焦点重合,则的值为     (  )
A.B.C.D.

题型:不详难度:| 查看答案
椭圆上一点M到焦点F1的距离为2,N是MF1的中点.则|ON|等于(    )
A.2B.4C.8D.

题型:不详难度:| 查看答案
与椭圆共焦点且过点P(2,1)的双曲线方程是(    )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.