已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.则椭圆的标准方程为       .

已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.则椭圆的标准方程为       .

题型:不详难度:来源:
已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.则椭圆的标准方程为       
答案

解析

试题分析:条件中给出一个直线系,需要先求出直线所过的定点,根据定点是椭圆的焦点,及椭圆C上的点到点F的最大距离为8,写出椭圆中三个字母系数要满足的条件,解方程组得到结果,写出椭圆的方程解:由(1+4k)x-(2-3k)y-(3+12k)=0得(x-2y-3)+k(4x+3y-12)=0,由x-2y-3=0,4x+3y-12=0,解得F(3,0).设椭圆C的标准方程为(a>b>0),则,c=3,a+c=8,,解得解得 a=5,b=4,c=3,从而椭圆C的标准方程为
点评:本题考查直线与圆锥曲线之间的关系,题目中首先求椭圆的方程,这是这类题目常用的一种形式,属于基础题.
举一反三
如图,已知椭圆的左焦点为,过点的直线交椭圆于两点,线段的中点为的中垂线与轴和轴分别交于两点.

(1)若点的横坐标为,求直线的斜率;
(2)记△的面积为,△为原点)的面积为.试问:是否存在直线,使得?说明理由.
题型:不详难度:| 查看答案
已知椭圆过点,上、下焦点分别为
向量.直线与椭圆交于两点,线段中点为
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线
与区域有公共点,试求的最小值.
题型:不详难度:| 查看答案
已知点是直线被椭圆所截得的线段中点,求直线的方程。
题型:不详难度:| 查看答案
椭圆具有 (   )
A.相同的长轴长B.相同的焦点
C.相同的离心率D.相同的顶点

题型:不详难度:| 查看答案
已知圆的方程为,过点作圆的两条切线,切点分别为,直线恰好经过椭圆的右顶点和上顶点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆垂直于轴的一条弦,所在直线的方程为是椭圆上异于的任意一点,直线分别交定直线于两点,求证.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.