经过两点的椭圆标准方程(    ).A.B.C.D.

经过两点的椭圆标准方程(    ).A.B.C.D.

题型:不详难度:来源:
经过两点的椭圆标准方程(    ).
A.B.C.D.

答案
A
解析
因为,焦点在x轴上,所以椭圆方程为
举一反三
已知P为椭圆上一点,F1F2是椭圆的两个焦点,,则△F1PF2的面积是          .
题型:不详难度:| 查看答案
已知椭圆C:,点M(2,1).
(1)求椭圆C的焦点坐标和离心率;
(2)求通过M点且被这点平分的弦所在的直线方程.
题型:不详难度:| 查看答案
.(本题满分14分)
已知圆M定点,点为圆上的动点,点上,点上,且满足
(Ⅰ) 求点G的轨迹C的方程;
(Ⅱ) 过点(2,0)作直线l,与曲线C交于A,B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由。
题型:不详难度:| 查看答案
(本小题满分13分)
已知椭圆 .有相同的离心率,过点的直线,依次交于A,C,D,B四点(如图).当直线的上顶点时, 直线的倾斜角为.

(1)求椭圆的方程;
(2)求证:;
(3)若,求直线的方程.
题型:不详难度:| 查看答案
已知椭圆E的中心在坐标原点,焦点在轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点且相互垂直的两条直线,交椭圆E于两点,交椭圆E于两点,的中点分别为
(1)求椭圆E的标准方程;
(2)求直线的斜率的取值范围;
(3)求证直线与直线的斜率乘积为定值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.