已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于A,B两点,若恰好将线段AB三等分,则=                          

已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于A,B两点,若恰好将线段AB三等分,则=                          

题型:不详难度:来源:
已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于A,B两点,若恰好将线段AB三等分,则=                            
答案

解析
解:由题意,C2的焦点为(±  ,0),一条渐近线方程为y=2x,根据对称性易AB为圆的直径且AB=2a
∴C1的半焦距c=  ,于是得a2-b2=5  ①
设C1与y=2x在第一象限的交点的坐标为(x,2x),代入C1的方程得:x2="a2b2" b2+4a2 ②,
由对称性知直线y=2x被C1截得的弦长=2 x,
由题得:2 x="2a/" 3 ,所以x="a" /3     ③
由②③得a2=11b2 ④
由①④得a2=5.5,b2=0.5 
举一反三
(满分15分)已知椭圆ab>0)的离心率,过点A(0,-b)和Ba,0)的直线与原点的距离为 
(1)求椭圆的方程 
(2)已知定点E(-1,0),若直线ykx+2(k≠0)与椭圆交于C D两点 问:是否存在k的值,使以CD为直径的圆过E点?请说明理由 

题型:不详难度:| 查看答案
已知水平地面上有一半径为4的篮球(球心),在斜平行光线的照射下,其阴影为一
椭圆(如图),在平面直角坐标系中,为原点,所在直线为轴,设椭圆的方程为
,篮球与地面的接触点为,且,则椭圆的离心率为______.
题型:不详难度:| 查看答案
(本小题满分14分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,线段轴的交点满足;⊙O是以F1F2为直径的圆,一直线l与⊙O相切,并与椭圆交于不同的两点AB.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当且满足时,求△AOB面积S的取值范围.
题型:不详难度:| 查看答案
已知椭圆C: 的一个顶点为A(2,0),离心率为,直线与椭圆C交于不同的两点M,N。
(1)  求椭圆C的方程
(2)  当的面积为时,求k的值。
题型:不详难度:| 查看答案
已知椭圆,椭圆的长轴为短轴,且与有相同的离心率。
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上,,求直线的方程
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.