如图椭圆 (a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.

如图椭圆 (a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.

题型:不详难度:来源:
如图椭圆 (a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆方程.
答案
)(1)e =. (2)故椭圆方程为
解析
(1) ∵焦点为F(c, 0), AB斜率为, 故CD方程为y=(x-c). 于椭圆联立后消去y得2x2-2cxb2="0." ∵CD的中点为G(), 点E(c, -)在椭圆上, ∴将E(c, -)代入椭圆方程并整理得2c2=a2, ∴e =.
(2)由(Ⅰ)知CD的方程为y=(x-c),  b="c," a=c.
与椭圆联立消去y得2x2-2cx-c2=0.
∵平行四边形OCED的面积为
S=c|yC-yD|=c=c,
∴c=, a="2," b=. 故椭圆方程为 
举一反三
中,。若以为焦点的椭圆经过点,则该椭圆的离心率          
题型:不详难度:| 查看答案
已知椭圆的中心在坐标原点,一条准线的方程为,过椭圆的左焦点,且方向向量为的直线交椭圆于两点,的中点为
(1)求直线的斜率(用表示);
(2)设直线的夹角为,当时,求椭圆的方程.
题型:不详难度:| 查看答案
已知直线与椭圆相交于A、B两点,且线段AB的中点,在直线上.(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.
题型:不详难度:| 查看答案
分别是椭圆的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知圆上的动点,点Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程;若不存在,试说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.