.(本小题满分14分)已知直线与椭圆相交于两点,且(其中为坐标原点).(1)若椭圆的离心率为,求椭圆的标准方程;(2)求证:不论如何变化,椭圆恒过定点;(3)若

.(本小题满分14分)已知直线与椭圆相交于两点,且(其中为坐标原点).(1)若椭圆的离心率为,求椭圆的标准方程;(2)求证:不论如何变化,椭圆恒过定点;(3)若

题型:不详难度:来源:
.(本小题满分14分)已知直线与椭圆相交于两点,且(其中为坐标原点).(1)若椭圆的离心率为,求椭圆的标准方程;
(2)求证:不论如何变化,椭圆恒过定点
(3)若直线过(2)中的定点,且椭圆的离心率,求原点到直线距离的取值范围.
答案
(Ⅰ)   (Ⅱ) () (Ⅲ)
解析
(1)由

………5分
(2)由则不论如何变化,椭圆恒过第一象限内的定点()……7分
(3)将定点坐标代入直线方程得
则原点到直线的距离为,又
……10分

由此得…12分 令

可证得

故原点到直线距离的取值范围为……14分
举一反三
已知方程=1是焦点在y轴上的椭圆,则m的取值范围是(    )
A.m<2B.m<-1或1<m<2C.1<m<2D.m<-1或1<m<

题型:不详难度:| 查看答案
椭圆的两个焦点为,点在椭圆上,

(1)求椭圆的方程;
(2)试确定的取值范围,使得椭圆上有两个不同的点关于直线对称.
题型:不详难度:| 查看答案
已知大西北某荒漠上两点相距2千米,现准备在荒漠上围垦出一片以为一条对角线的平行四边形区域建农艺园.按照规划,围墙总长为8千米.
(1)试求四边形另两个顶点的轨迹方程;
(2)该荒漠上有一条直线型小溪刚好通过点,且角.现要对整条小溪进行改造,因考虑到小溪可能被农艺园围进的部分今后重新设计改造,因此对该部分暂不改造.问暂不改造的部分有多长?
题型:不详难度:| 查看答案
已知是椭圆的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足为坐标原点),.若椭圆的离心率等于
(1)求直线的方程;
(2)若三角形的面积等于,求椭圆的方程.
题型:不详难度:| 查看答案
已知椭圆的中心在原点,焦点在x 轴上,离心率为,且椭圆经过圆C:的圆心C。
(1)求椭圆的方程;
(2)设直线过椭圆的焦点且与圆C相切,求直线的方程。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.