椭圆x2a2+y2b2=1(a>b>0)的右焦点F,直线x=a2c与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是( 

椭圆x2a2+y2b2=1(a>b>0)的右焦点F,直线x=a2c与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是( 

题型:不详难度:来源:
椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,直线x=
a2
c
与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(  )
A.(0,


2
2
]
B.(0,
1
2
]
C.[


2
-1,1)
D.[
1
2
,1)
答案
由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,即F点到P点与A点的距离相等
而|FA|=
a2
c
-c=
b2
c

|PF|∈[a-c,a+c]
于是
b2
c
∈[a-c,a+c]
即ac-c2≤b2≤ac+c2





ac-c2a2-c2
a2-c2≤ac+c2






c
a
≤1
c
a
≤-1或
c
a
1
2

又e∈(0,1)
故e∈[
1
2
,1]

故选D.
举一反三
已知椭圆C的中心在原点,焦点F1、F2在x轴上,点P为椭圆上的一个动点,且∠F1PF2的最大值为90°,直线l过左焦点F2与椭圆交于A、B两点,△ABF2的面积最大值为12.
(1)求椭圆C的离心率;
(2)求椭圆C的方程.
题型:不详难度:| 查看答案
椭圆
x2
3
+
y2
2
=1的焦点坐标是(  )
A.(±1,0))B.(0,±


5
C.(±


5
,0
D.(0,±1)
题型:不详难度:| 查看答案
设椭圆
x2
25
+
y2
9
=1
的两个焦点分别为F1,F2,若点P椭圆上,且cos∠F1PF2=
1
2
,则|PF1|•|PF2|=______.
题型:不详难度:| 查看答案
已知椭圆的长轴长与短轴长之比为2:1,则它的离心率为(  )
A.
1
2
B.


3
3
C.
2


3
3
D.


3
2
题型:不详难度:| 查看答案
椭圆
x2
m2
+
y2
9
=1
(m>0)的一个焦点为(4,0),则该椭圆的离心率为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.