已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C

题型:不详难度:来源:
已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求·的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
答案
(1) +=1    (2)    (3)见解析
解析

(1)解:由题意知e==,
∴e2===,
即a2=b2.
又b==,
∴b2=3,a2=4,
故椭圆的方程为+=1.
(2)解:由题意知直线l的斜率存在,
设直线l的方程为y=k(x-4).

得(4k2+3)x2-32k2x+64k2-12=0.
由Δ=(-32k2)2-4(4k2+3)(64k2-12)>0,
得k2<.
设A(x1,y1),B(x2,y2),
    (*)
∴y1y2=k2(x1-4)(x2-4)=k2x1x2-4k2(x1+x2)+16k2,
·=x1x2+y1y2
=(1+k2-4k2·+16k2
=25-
∵0≤k2<,
∴-≤-<-,
·.
·的取值范围是.
(3)证明:∵B、E两点关于x轴对称,
∴E(x2,-y2).
直线AE的方程为y-y1=(x-x1),
令y=0得x=x1-,
又y1=k(x1-4),y2=k(x2-4),
∴x=.
将(*)式代入得,x=1,
∴直线AE与x轴交于定点(1,0).
举一反三
已知椭圆C:+=1(a>b>0),左、右两个焦点分别为F1,F2,上顶点A(0,b),△AF1F2为正三角形且周长为6.
(1)求椭圆C的标准方程及离心率;
(2)O为坐标原点,P是直线F1A上的一个动点,求|PF2|+|PO|的最小值,并求出此时点P的坐标.
题型:不详难度:| 查看答案
以下几个命题中:其中真命题的序号为_________________(写出所有真命题的序号)
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若则动点P的轨迹为椭圆;
③双曲线有相同的焦点;
④在平面内,到定点的距离与到定直线的距离相等的点的轨迹是抛物线.
题型:不详难度:| 查看答案
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的倍,其上一点到右焦点的最短距离为
(1)求椭圆的标准方程;
(2)若直线交椭圆两点,当时求直线的方程
题型:不详难度:| 查看答案
已知点,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,则(    )
A.B.
C.D.

题型:不详难度:| 查看答案
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.