如图,椭圆:的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且.(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆相交于两

如图,椭圆:的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且.(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆相交于两

题型:不详难度:来源:
如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.
答案
(Ⅰ)椭圆的方程为 . (Ⅱ)实数取值范围为.
解析

试题分析:(Ⅰ)由抛物线方程,得焦点
所以椭圆的方程为:
解方程组 得C(1,2),D(1,-2). 由于抛物线、椭圆都关于x轴对称,
, ∴ .       2分
因此,,解得并推得
故椭圆的方程为 .                  4分
(Ⅱ)由题意知直线的斜率存在.

.
.  6分
.
,∴

,∴.∴,  8分
,∴
.
∵点在椭圆上,∴
,  10分

∴实数取值范围为.  12分
点评:难题,求椭圆的标准方程,主要运用了抛物线及椭圆的几何性质,建立a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)结合向量的坐标运算,确定得到t的函数式,通过确定函数的值域,达到确定实数取值范围的目的。利用函数思想解题,是一道好例。
举一反三
已知是椭圆的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足是坐标原点),,若椭圆的离心率为.
(1)若的面积等于,求椭圆的方程;
(2)设直线与(1)中的椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值.
题型:不详难度:| 查看答案
已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.
题型:不详难度:| 查看答案
已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(Ⅰ)若,求外接圆的方程;
(Ⅱ)若直线与椭圆相交于两点,且,求的取值范围.
题型:不详难度:| 查看答案
已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.

(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为,直线PB的斜率为,判断+的值是否为常数,并说明理由.
题型:不详难度:| 查看答案
已知A、B为抛物线上的不同两点,F为抛物线C的焦点,若则直线AB的斜率为
A.        B.       C.       D.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.