(本小题满分12分)抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且。 (1) 求抛物线方程;(2) 在x轴上是否存在一

(本小题满分12分)抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且。 (1) 求抛物线方程;(2) 在x轴上是否存在一

题型:不详难度:来源:
(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且。 
(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
答案
(1)(2)故在x轴上不存在一点C, 使三角形ABC是正三角形
解析

试题分析:(1)设抛物线方程为
得:






抛物线方程是……………………………………………6分
(2)设AB的中点是D,则
假设x轴上存在一点C(x0, 0)
因为三角形是正三角形,
所以CD⊥AB
得:


矛盾,故在x轴上不存在一点C, 使三角形ABC是正三角形…………12分
点评:解析几何的本质就是运用代数的方法,结合坐标来分析解析几何中的图形的性质。因此设而不求的思想,是解析几何中解答题的必须步骤,同时结合韦达定理来实现坐标关系,属于中档题。
举一反三
已知抛物线的准线与双曲线相切,则双曲线的离心率        
题型:不详难度:| 查看答案
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于两点.
① 若直线垂直于轴,求的大小;
② 若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
题型:不详难度:| 查看答案
设平面区域D是由双曲线的两条渐近线和抛物线y2 ="-8x" 的准线所围成的三角形(含边界与内部).若点(x,y) ∈ D,则x+ y的最小值为
A.-1B.0C.1D.3

题型:不详难度:| 查看答案
如图,椭圆的中心在坐标原点0,顶点分别是A1, A2, B1, B2,焦点分别为F1 ,F2,延长B1F2 与A2B2交于P点,若为钝角,则此椭圆的离心率的取值范围为
A.(0,B.(,1)
C.(0,D.(,1)

题型:不详难度:| 查看答案
设A、B为在双曲线上两点,O为坐标原点.若=0,则ΔAOB面积的最小值为______
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.