设斜率为的直线与椭圆交于不同的两点,且这两个交点在轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为(  )A.B.C.D.

设斜率为的直线与椭圆交于不同的两点,且这两个交点在轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为(  )A.B.C.D.

题型:不详难度:来源:
设斜率为的直线与椭圆交于不同的两点,且这两个交点在轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为(  )
A.B.C.D.

答案
A
解析
分析:先根据题意表示出两个焦点的交点坐标,代入椭圆方程,两边乘2a2b2,求得关于 的方程求得e.
解答:解:两个交点横坐标是-c,c
所以两个交点分别为(-c,-c)(c,c)
代入椭圆+=1
两边乘2a2b2
则c2(2b2+a2)=2a2b2
∵b2=a2-c2
c2(3a2-2c2)=2a^4-2a2c2
2a^4-5a2c2+2c^4=0
(2a2-c2)(a2-2c2)=0=2,或
∵0<e<1
所以e==
故选A
举一反三
(本小题满分12分)已知椭圆的离心率为,过焦点且垂直于长轴的直线被椭圆截得的弦长为,过点的直线与椭圆相交于两点
(1)求椭圆的方程
(2)设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围
题型:不详难度:| 查看答案
已知双曲线的方程为,过左焦点F1作斜率为的直线交双曲线的右支于点P,且轴平分线段F1P,则双曲线的离心率是           
题型:不详难度:| 查看答案
.(本小题满分12分)
已知椭圆的离心率为,且经过点
(1)求椭圆C的方程;
(2)已知A为椭圆C的左顶点,直线过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率 满足(定值),求直线的斜率。
题型:不详难度:| 查看答案
设斜率为2的直线l过抛物线y2ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线的方程为(  )
A.y2=±4xB.y2=±8C.y2=4xD.y2=8x

题型:不详难度:| 查看答案
已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线xy+4=0有且仅有一个交点,则椭圆的长轴长为(  )
A.3B.2C.2D.4

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.