在直角坐标系中,曲线的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为则与的交点个数为       .

在直角坐标系中,曲线的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为则与的交点个数为       .

题型:不详难度:来源:

在直角坐标系中,曲线的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为的交点个数为       .
答案
2
解析

举一反三
方程所表示的曲线为     
A.焦点在轴上的椭圆B.焦点在轴上的椭圆
C.焦点在轴上的双曲线D.焦点在轴上的双曲线

题型:不详难度:| 查看答案
已知椭圆和双曲线有公共的焦点,那么双曲线的离心率为          
题型:不详难度:| 查看答案


如图,设是圆珠笔上的动点,点D是轴上的投影,M为D上一点,且
(Ⅰ)当的在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度。
题型:不详难度:| 查看答案

已知点(2,3)在双曲线C:(a>0,b>0)上,C的焦距为4,则它的离心率为_____________.
题型:不详难度:| 查看答案

本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.

(1)设,求的比值;
(2)当e变化时,是否存在直线l,使得BO∥AN,并说明理由
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.