已知抛物线的焦点与双曲线的一个焦点重合,则该双曲线的离心率为           (   )A.B.C.D.3

已知抛物线的焦点与双曲线的一个焦点重合,则该双曲线的离心率为           (   )A.B.C.D.3

题型:不详难度:来源:
已知抛物线的焦点与双曲线的一个焦点重合,则该双曲线的离心率为           (   )
A.B.C.D.3

答案
B
解析

举一反三
(本题满分13 分)
已知椭圆的右焦点F 与抛物线y2 =" 4x" 的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F 的直线与椭圆相交于A、B 两点,点C 在右准线l上,BC//x 轴.
(1)求椭圆的标准方程,并指出其离心率;
(2)求证:线段EF被直线AC 平分.
题型:不详难度:| 查看答案
(本题满分12分)
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的标准方程;
(2)设直线与椭圆交于不同两点,请问是否存在这样的
直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且轴,若为双曲线的一条斜率大于0的渐近线,则的斜率可以在下列给出的某个区间内,该区间可以是(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分13分)
已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是
(I)证明为常数;
(II)若动点满足(其中为坐标原点),求点的轨迹方程.
题型:不详难度:| 查看答案
(本小题满分12分)
设动点P到点A(-l,0)和B(1,0)的距离分别为d1d2
APB=2θ,且存在常数λ(0<λ<1=,使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线交双曲线C的右支于MN
点,试确定λ的范围,使·=0,其中点
O为坐标原点.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.